1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
3 years ago
15

A seamless pipe carries 2400m³ of steam per hour at a pressure of 1.4N/mm².The velocity of flow is 30m/s.assuming the tensile st

ress as 40Mpa,find the inside diameter of the pipe and its wall thickness.​
Engineering
1 answer:
MatroZZZ [7]3 years ago
7 0

Answer:

yessss

Explanation:

You might be interested in
At steady state, air at 200 kPa, 325 K, and mass flow rate
Vera_Pavlovna [14]
Letra A

A letra

A.
Thank
3 0
3 years ago
The water in a large lake is to be used to generate electricity by the installation of a hydraulic turbine-generator at a locati
Lynna [10]

Answer:

a) 0.76

b) 0.80

c) 1964 kW

Explanation:

GIVEN DATA:

\dot m = 5000 kg/s

Assume Mechanical energy at exist is negligible

A) Take lake bottom as reference, and then kinetic and potential energy  are taken as zero.

change in mechanical energy is givrn as

e_{in} - e_{out} = \frac{P}{\rho} - 0 = gh = 9.81 \times 50( \frac{1 kJ/kg}{1000 m^2/s^2}

                         = 0.491 kJ/kg

\Delta \dot E_{mec} = \dot m (e_{in} - e_{out}) = 5000 \times 0.491 = 2455 kW

\eta_{OVERALL}  = \frac{\dot W}{\Delta \dot E_{mec}} = \frac{1862}{2455} = 0.76

B) \eta -{gen} = \frac{\eta_{overall}}{\eta_{gen}} = \frac{0.76}{0.95} = 0.80

c) \dot W_{shaft} = \eta_{overall} \left | \Delta \dot E_{mec} \right | = 0.80(2455)

\dot W_{shaft} = 1964 kW

7 0
4 years ago
A large class with 1,000 students took a quiz consisting of ten questions. To get an A, students needed to get 9 or 10 questions
VMariaS [17]

Answer:

a. 0.11

b. 110 students

c. 50 students

d. 0.46

e. 460 students

f. 540 students

g. 0.96

Explanation:

(See attachment below)

a. Probability that a student got an A

To get an A, the student needs to get 9 or 10 questions right.

That means we want P(X≥9);

P(X>9) = P(9)+P(10)

= 0.06+0.05=0.11

b. How many students got an A on the quiz

Total students = 1000

Probability of getting A = 0.11 ---- Calculated from (a)

Number of students = 0.11 * 1000

Number of students = 110 students

So,the number of students that got A is 110

c. How many students did not miss a single question

For a student not to miss a single question, then that student scores a total of 10 out of possible 10

P(10) = 0.05

Total Students = 1000

Number of Students = 0.05 * 1000

Number of Students = 50 students

We see that 5

d. Probability that a student pass the quiz

To pass, a student needed to get at least 6 questions right.

So we want P(X>=6);

P(X>=) =P(6)+P(7)+P(8)+P(9)+P(10)

=0.08+0.12+0.15+0.06+0.05=0.46

So, the probability of a student passing the quiz is 0.46

e. Number of students that pass the quiz

Total students = 1000

Probability of passing the quiz = 0.46 ----- Calculated from (d)

Number of students = 0.46 * 1000

Number of students = 460 students

So,the number of students that passed the test is 460

f. Number of students that failed the quiz

Total students = 1000

Total students that passed = 460 ----- Calculated from (e)

Number of students that failed = 1000 - 460

Number of students that failed = 540

So,the number of students that failed is 540

g. Probability that a student got at least one question right

This means that we want to solve for P(X>=1)

Using the complement rule,

P(X>=1) = 1 - P(X<1)

P(X>=1) = 1 - P(X=0)

P(X>=1) = 1 - 0.04

P(X>=1) = 0.96

7 0
3 years ago
Steam enters a turbine at 8000 kPa, 440oC. At the exit, the pressure and quality are 150 kPa and 0.19, respectively.
levacccp [35]

Answer:

\dot W_{out} = 3863.98\,kW

Explanation:

The turbine at steady-state is modelled after the First Law of Thermodynamics:

-\dot Q_{out} -\dot W_{out} + \dot m \cdot (h_{in}-h_{out}) = 0

The specific enthalpies at inlet and outlet are, respectively:

Inlet (Superheated Steam)

h_{in} = 3353.1\,\frac{kJ}{kg}

Outlet (Liquid-Vapor Mixture)

h_{out} = 890.1\,\frac{kJ}{kg}

The power produced by the turbine is:

\dot W_{out}=-\dot Q_{out} + \dot m \cdot (h_{in}-h_{out})

\dot W_{out} = -2.93\,kW + (1.57\,\frac{kg}{s} )\cdot (3353.1\,\frac{kJ}{kg} - 890.1\,\frac{kJ}{kg} )

\dot W_{out} = 3863.98\,kW

8 0
3 years ago
Design an algorithm for computing √n
a_sh-v [17]
Positive integer n design an algorithm
8 0
2 years ago
Other questions:
  • 1. Get the trDFgrouped data starting from the May heavy day counts to the August heavy counts
    12·1 answer
  • A cylindrical hot water storage tank (see sketch) for a set of collectors is located in the basement of a dwelling. The tank is
    13·1 answer
  • Steam enters an adiabatic turbine at 8 MPa and 500°C at a rate of 3.2 kg/s and leaves at 20 kPa. If the power output of the turb
    5·1 answer
  • If you have held a learner's license for more than three months, you may NOT drive _____.
    5·2 answers
  • Tin atoms are introduced into a FCC copper crystal, producing an alloy with a lattice pa- rameter of 3.7589 x 10-8 cm and a dens
    8·1 answer
  • Which one of the following women won the American Mathematical Society Scatter Prize, a Clay Mathematics Institute Fellowship, a
    8·1 answer
  • Define cooling tower "range" as it applies to cooling towers.
    5·1 answer
  • The volume of a right circular cone of radius r and height h is V = 1 3 πr 2h (a) (i) Find a formula for the instantaneous rate
    8·1 answer
  • . In the U.S. fuel efficiency of cars is specified in miles per gallon (mpg). In Europe it is often expressed in liters per 100
    8·1 answer
  • What is the name of the type of rocker arm stud that does not require a valve adjustment?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!