If a shark can travel 15 miles per second, then it can go 150 miles in 10 seconds.
Think of it this way:
-- Any time you have something that means (some number) PER UNIT,
it doesn't matter how many units there are on the table or in the bucket,
because that amount doesn't change the (number) PER UNIT.
-- If oranges cost $1 PER POUND, it doesn't matter how many pounds
you buy, the whole bagful is still $1 PER POUND.
-- If a certain salad dressing has 40 calories PER Tablespoon, it doesn't
matter whether you eat a drop of it or drink the whole jar. You still get
40 calories PER Tablespoon.
-- Density means '(mass) PER unit of volume'. Whether you have a tiny
chip of the substance or a whole truckload of it, there's still the same
amount of mass IN EACH unit of volume.
Answer:
About two kilometers away

Explanation:
Given:
The time gap between the light and sound to travel to the house, 
<em>Since the clouds are formed in the troposphere region of the atmosphere which extends from 8 kilometers to 12 kilometers above the earth-surface and the velocity of light is 300000 kilometers per second so it is visible almost instantly, hence we neglect the time taken by the light to travel to the house from the clouds.</em>
<u>∴Distance between the lightning-strike and the house:</u>

we have the speed of sound as: 
So,



Answer:
i) E = 269 [MJ] ii)v = 116 [m/s]
Explanation:
This is a problem that encompasses the work and principle of energy conservation.
In this way, we establish the equation for the principle of conservation and energy.
i)

![W_{1-2}= (F*d) - (m*g*h)\\W_{1-2}=(500000*2.5*10^3)-(40000*9.81*2.5*10^3)\\W_{1-2}= 269*10^6[J] or 269 [MJ]](https://tex.z-dn.net/?f=W_%7B1-2%7D%3D%20%28F%2Ad%29%20-%20%28m%2Ag%2Ah%29%5C%5CW_%7B1-2%7D%3D%28500000%2A2.5%2A10%5E3%29-%2840000%2A9.81%2A2.5%2A10%5E3%29%5C%5CW_%7B1-2%7D%3D%20269%2A10%5E6%5BJ%5D%20or%20269%20%5BMJ%5D)
At that point the speed 1 is equal to zero, since the maximum height achieved was 2.5 [km]. So this calculated work corresponds to the energy of the rocket.
Er = 269*10^6[J]
ii ) With the energy calculated at the previous point, we can calculate the speed developed.
![E_{k2}=0.5*m*v^2\\269*10^6=0.5*40000*v^2\\v=\sqrt{\frac{269*10^6}{0.5*40000} }\\ v=116[m/s]](https://tex.z-dn.net/?f=E_%7Bk2%7D%3D0.5%2Am%2Av%5E2%5C%5C269%2A10%5E6%3D0.5%2A40000%2Av%5E2%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B269%2A10%5E6%7D%7B0.5%2A40000%7D%20%7D%5C%5C%20v%3D116%5Bm%2Fs%5D)