Explanation:
At maximum height, the vertical component of a ball's speed is 0. So the net speed is equal to whatever the horizontal component of the ball is. If the ball is launched straight up, the speed at the highest point is simply 0.
The impulse experienced is -18,000 kg m/s
Explanation:
The impulse exerted on an object is equal to the change in momentum of the object. Mathematically:

where
m is the mass of the object
v is the final velocity of the object
u is the initial velocity
is the change in momentum
I is the impulse
In the collision in this problem,
m = 1300 kg is the mass of the car
u = 11 m/s is the initial velocity
v = -2.5 m/s is the final velocity (negative, since it is in the opposite direction)
Substituting, we find

So the closest choice is
-18,000 kg m/s
Learn more about impulse and change in momentum:
brainly.com/question/9484203
#LearnwithBrainly
yes because your mass doesn't change but your weight can
ex- if you travel to Saturn your weight would change but your mass would stay the same
Answer:
a) 298.5 nm
, 522.4 nm and b) radiation frequency does not change
Explanation:
When electromagnetic radiation reaches a medium with a different index of refraction, the medium vibrates the molecules, as if it were a resonance process, whereby the medium vibrates at the same frequency as the incident light.
On the other hand, when the light reaches another medium its average speed within the medium changes, it is now less than the speed of light in a vacuum (c) for this to happen as we saw that the frequency is constant there must be a change in the wavelength of the radiation that is characterized by the ratio
λₙ = λ₀ / n
λₙ = 400 nm in the void
λₙ = 400 / 1.34
λₙ= 298.5 nm
λ₀ = 700 nm
λₙ = 700 / 1.34
λₙ = 522.4 nm
The radiation frequency does not change
Answer:
The answer to this is falling all the way through the Earth is impossible, since its core is molten. ... As you approached the center of the earth the pull of gravity would decline and eventually (at the center) cease, but inertia would keep you going.
Explanation:
your welcome