1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
3 years ago
14

A ball is thrown horizontally from the top of a 55 m building and lands 150 m from the base of the building. Ignore air resistan

ce, and use a coordinate system whose origin is at the top of the building, with positive y upwards and positive x in the direction of the throw.
Physics
1 answer:
PtichkaEL [24]3 years ago
5 0

Answer:

a) t =3.349 s

b) V_x,i = 44.8 m/s

c) V_y,f = 32.85 m/s

d)  V = 55.55 m/s

Explanation:

Given:

- Total throw in x direction x(f) = 150 m

- Total distance traveled down y(f) = 55 m

Find:

a) How long is the rock in the air in seconds.  

b) What must have been the initial horizontal component of the velocity, in meters per second?

c) What is the vertical component of the velocity just before the rock hits the ground, in meters per second?

d) What is the magnitude of the velocity of the rock just before it hits the ground, in meters per second?

Solution:

- Use the second equation of motion in y direction:

                                 y(f) = y(0) + V_y,i*t + 0.5*g*t^2

- V_y,i = 0 (horizontal throw)

                                 55 = 0 + 0 + 0.5*(9.81)*t^2

                                 t = sqrt ( 55 * 2 / 9.81 )

                                 t =3.349 s

- Use the second equation of motion in x direction:

                                 x(f) = x(0) + V_x,i*t

                                 150 = 0 + V_x,i*3.349

                                  V_x,i = 150 / 3.349 = 44.8 m/s

- Use the first equation of motion in y direction:

                                 V_y,f = V_y,i + g*t

                                 V_y,f = 0 + 9.81*3.349

                                 V_y,f = 32.85 m/s

- The magnitude of velocity of ball when it hits the ground is:

                                 V^2 = V_y,f^2 + V_x,i^2

                                 V = sqrt (32.85^2 + 44.8^2)

                                 V = 55.55 m/s

You might be interested in
g The magnetic force on a charged particle A. depends on the sign of the charge on the particle. B. depends on the velocity of t
Leona [35]

Answer:

E) is described by all of these

Explanation:

The magnetic force on a charged particle is expressed as:

F = qv * B = qvBsinθ

Where,

q = charge on particle

θ = angle between the magnetic field and the particle velocity.

v = velocity of the particle

B = magnitude of field vector

From here, we could denote that magnetic force, F depends on charge on particle, velocity of particle, magnitude of field vector.

The magnetic force on a charged particle is at right angles to both the velocity of the particle. The magnetic force and magnetic field in a charged particle are perpendicular to each other, the right hand rule is used to determine the direction of force.

The correct option is E.

3 0
2 years ago
Read 2 more answers
What force is represented by the vector?
choli [55]
Well I think B hope this helps
8 0
2 years ago
Read 2 more answers
What course the colour of silt soil?
Nata [24]

Answer:

Beige to black.

Explanation:

:)

3 0
2 years ago
Red, Yellow, Green, and Purple are in a physical fitness race, pulling different amounts of weights. Considering the equations f
solong [7]

Answer:

a

Explanation:

plz make me brainliest

4 0
2 years ago
Help please fast + i dont want an answer from g**gle .
velikii [3]
7) 6, i believe, (Cu) 1 atom+ (S) 1 atom+(0)4 atoms.
7 0
3 years ago
Other questions:
  • What does a cell division allow all multicellular organisms to do
    13·1 answer
  • What is the cost of conserved energy for compact fluorescent lighting?
    15·1 answer
  • One ring of radius a is uniformly charged with charge +Q and is placed so its axis is the x-axis. A second ring with charge –Q i
    9·1 answer
  • What’s gravitational pull of the earth
    6·2 answers
  • Modern wind turbines are larger than they appear, and despite their apparently lazy motion, the speed of the blades tips can be
    15·1 answer
  • HELP ME PLEASE
    15·1 answer
  • A 0.25 kg beach ball rolling at a speed of 7 m/s collides with a heavy exercise ball at rest. The beach ball bounces straight ba
    15·1 answer
  • What happens when two sound waves meet in destructive interference?
    14·1 answer
  • How does using the straw demonstrate “point of application” of a force?
    14·2 answers
  • A car is traveling at a constant speed on the highway. Its tires have a diameter of 68.0 cm and are rolling without sliding or s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!