Yes it does (not to be mean its kinda stupid for you to ask)
The answer is a because if you look really close
Answer:
A. 1.64 J
Explanation:
First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:

where
n is the number of moles
m = 1.4 mg = 0.0014 g is the mass of mercury
Mm = 200.6 g/mol is the molar mass of mercury
Substituting, we find

Now we have to find the number of atoms contained in this sample of mercury, which is given by:

where
n is the number of moles
is the Avogadro number
Substituting,
atoms
The energy emitted by each atom (the energy of one photon) is

where
h is the Planck constant
c is the speed of light
is the wavelength
Substituting,

And so, the total energy emitted by the sample is

Answer:
a)KE=878.8 J
b)W=2636.4 J
Explanation:
Given that
mass ,m = 65 kg
Initial speed ,u = 5.2 m/s
a)
We know that kinetic energy KE is given as follows

m=mass
u=velocity
Now by putting the values in the above equation we get

KE=878.8 J
b)
We know that
Work done by all forces = Change in the kinetic energy
The final velocity , v= 2 u = 2 x 5.2 m/s
v= 10.4 m/s

Now by putting the values in the above equation we get

W=2636.4 J
a)KE=878.8 J
b)W=2636.4 J
Answer:

Explanation:
Let the sphere is uniformly charge to radius "r" and due to this charged sphere the electric potential on its surface is given as

now we can say that


now electric potential is given as


now work done to bring a small charge from infinite to the surface of this sphere is given as


here we know that

now the total energy of the sphere is given as



