Answer:
Number of moles of Fe = 10 mol
Number of moles of CO₂ = 15 mol
Explanation:
Given data:
Number of moles of iron oxide = 5 mol
Number of moles of carbon monoxide = 25 mol
Number of moles of product = ?
Solution:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Now we will compare the moles of reactant with product.
Fe₂O₃ : Fe
1 : 2
5 : 2×5 = 10 mol
Fe₂O₃ : CO₂
1 : 3
5 : 3×5 = 15 mol
CO : Fe
3 : 2
25 : 2/3×25 = 16.7 mol
CO : CO₂
3 : 3
25 : 25
Less number of moles of Fe and CO₂ are formed by iron oxide thus it will act as limiting reactant while CO is inn excess.
Answer:
Three pairs of walking legs, wings, body divided into three segments, pair of sensory antennae.
Explanation:
A molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
The bonding orbital, which would be more stable and encourages the bonding of the two H atoms into
, is the orbital that is located in a less energetic state than just the electron shells of the separate atoms. The antibonding orbital, which has higher energy but is less stable, resists bonding when it is occupied.
An asterisk (sigma*) is placed next to the corresponding kind of molecular orbital to indicate an antibonding orbital. The antibonding orbital known as * would be connected to sigma orbitals, as well as antibonding pi orbitals are known as
* orbitals.
Therefore, molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
<u></u>
Hence, the correct answer will be option (b)
<u />
To know more about molecular orbital
brainly.com/question/13265432
#SPJ4
<u />
<u />
Answer: Reducing agent in the given reaction is
.
Explanation:
A reducing agent is defined as an element which tends to lose electrons to other element leading to an increase in its oxidation number.
In the given reaction, oxidation state of sulfur in
is +2 and
has 0 oxidation state.
In
oxidation state of S is 2.5 and in
oxidation state of I is -1.
Since, an increase in oxidation state of S is occurring from +2 to +2.5. Hence, it is acting as a reducing agent.
Thus, we can conclude that reducing agent in the given reaction is
.
Polar will always have the higher boiling point because they have strong van der waal forces