1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sveta_85 [38]
3 years ago
14

8) A plastic rod, initially uncharged, is rubbed with wool and obtains a charge of 10 C. What is the charge on the wool after ru

bbing?
Physics
1 answer:
LenKa [72]3 years ago
6 0

Answer:

The charge on the wool after rubbing is - 10 C

Explanation:

Every uncharged body is electrically neutral, if the plastic rod acquires 10 Coulombs of charge after been rubbed with wool, then the wool will be left with an equal but opposite charge. This shows that the initial charge on the wool is 10 protons and 10 electrons and when the plastic acquires 10 C (10 protons), the wool will be left with excess 10 electrons.

Therefore, the charge on the wool after rubbing is - 10 C (negative 10 Coulombs).

You might be interested in
The geocentric theory states that the center of the universe is
lilavasa [31]

i sorry i thought of geocentric as something else it appears that the earth was the center

8 0
3 years ago
A solid sphere of radius 40.0 cm has a total positive charge of 16.2 μC uniformly distributed throughout its volume. Calculate t
Jobisdone [24]

Answer:

(a) E=0  :   0 cm from the center of the sphere

(b) E= 227.8*10³ N/C   :    10.0 cm from the center of the sphere

(c)E= 911.25*10³ N/C    :    40.0 cm from the center of the sphere

(d)E= 411.84 * 10³ N/C  :    59.5 cm from the center of the sphere

Explanation:

If we have a uniform charge sphere we can use the following formulas to calculate the Electric field due to the charge of the sphere

E=\frac{K*Q}{r^{2} } : Formula (1) To calculate the electric field in the region outside the sphere r ≥ a

E=k*\frac{Q}{a^{3} } *r :Formula (2) To calculate the electric field in the inner region of the sphere. r ≤ a

Where:

K: coulomb constant

a: sphere radius

Q:  Total sphere charge

r : Distance from the center of the sphere to the region where the electric field is calculated

Equivalences

1μC=10⁻⁶C

1cm= 10⁻²m

Data

k= 9*10⁹ N*m²/C²

Q=16.2 μC=16.2 *10⁻⁶C

a= 40 cm = 40*10⁻²m = 0.4m

Problem development

(a)Magnitude of the electric field at  0 cm :

We replace r=0 in the formula (2) , then, E=0

(b) Magnitude of the electric field at 10.0 cm from the center of the sphere

r<a , We apply the Formula (2):

E=9*10^{9} *\frac{16.2*10^{-6} }{0.4^{3} } *0.1

E= 227.8*10³ N/C

(c) Magnitude of the electric field at 40.0 cm from the center of the sphere

r=a, We apply the Formula (1) :

E=\frac{9*10^{9}*16.2*10^{-6} }{0.4^{2} }

E= 911.25*10³ N/C

(d) Magnitude of the electric field at 59.5 cm from the center of the sphere  

r>a , We apply the Formula (1) :

E=\frac{9*10^{9}*16.2*10^{-6} }{0.595^{2} }

E= 411.84 * 10³ N/C

4 0
3 years ago
A model rocket blasts off from the ground, rising straight upward with a constant acceleration that has a magnitude of 86.0 m/s2
Harman [31]
<span>When the fuel  of the rocket is consumed, the acceleration would be zero. However, at this phase the rocket would still be going up until all the forces of gravity would dominate and change the direction of the rocket. We need to calculate two distances, one from the ground until the point where the fuel is consumed and from that point to the point where the gravity would change the direction. 

Given:
a = 86 m/s^2 
t = 1.7 s

Solution:

d = vi (t) + 0.5 (a) (t^2) 
d = (0) (1.7) + 0.5 (86) (1.7)^2 
d = 124.27 m 

vf = vi + at 
vf = 0 + 86 (1.7) 
vf = 146.2 m/s (velocity when the fuel is consumed completely) 

Then, we calculate the time it takes until it reaches the maximum height.
vf = vi + at 
0 = 146.2 + (-9.8) (t) 
t = 14.92 s

Then, the second distance
d= vi (t) + 0.5 (a) (t^2) 
d = 146.2 (14.92) + 0.5 (-9.8) (14.92^2) 
d = 1090.53  m

Then, we determine the maximum altitude:
 d1 + d2 = 124.27 m + 1090.53 m = 1214.8 m</span>
5 0
2 years ago
Determine the speed of sound on a rainy day with the temperature of 18 degrees celsius.
dexar [7]

Answer:

18 degrees celcius = 64.4

Explanation:

Fahrenheit

5 0
2 years ago
The size of the gravitational force between two objects depends on their__. frictional force, inertia, masses and the distance b
Inessa [10]

Answer:

Masses and distance between them

Explanation:

The gravitational force between two objects can be calculated using Newton's Gravitational Law.

However, using logic, we can already dictate what the answer will be, for example. We know that the bigger an object is, the stronger its gravity is. This can be seen with how the moon is much smaller, and also has much less gravity.

Also, the distance between two objects also influences the gravity. This can be seen the further an object gets from Earth, the less of a pull the gravitational field has on it. Another example is that Pluto (being very far from the sun) has less of a gravitational effect from the sun, in comparison to Mercury (the closest plant to the sun).

3 0
3 years ago
Other questions:
  • As you move away from a positive charge distribution, the electric field:
    13·1 answer
  • Which simple machine is a doorknob?
    15·1 answer
  • Assume that the speed of light in a vacuum has the hypothetical value of 18.0 m/s. A car is moving at a constant speed of 14.0 m
    12·1 answer
  • Determine the maximum shearing stress in a solid shaft of 1.5-in. diameter as it transmits 75 hp at a speed of 1800 rpm. (Round
    12·1 answer
  • Which device provides electrical energy to run an electric circuit
    14·2 answers
  • Which front is a head on collision or neither warm nor cold air moves
    7·1 answer
  • Consider a turnbuckle that has been tightened until the tension in wire AD is 350 N. Draw the FBD that is required to determine
    6·1 answer
  • Metric conversions
    5·1 answer
  • Help me please (。'-‿-。)​
    9·2 answers
  • Does the buoyant force on a submerged object depend on the volume of the object or on the weight of the object?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!