Answer:
M₂ = M then L₂ = L
M₂> M then L₂ = \frac{M}{M_{2}} L
Explanation:
This is a static equilibrium exercise, to solve it we must fix a reference system at the turning point, generally in the center of the rod. By convention counterclockwise turns are considered positive
∑ τ = 0
The mass of the rock is M and placed at a distance, L the mass of the rod M₁, is considered to be placed in its center of mass, which by uniform e is in its geometric center (x = 0) and the triangular mass M₂, with a distance L₂
The triangular shape of the second object determines that its mass can be considered concentrated in its geometric center (median) that tapers with a vertical line if the triangle is equilateral, the most used shape in measurements.
M L + M₁ 0 - m₂ L₂ = 0
M L - m₂ L₂ = 0
L₂ =
L
From this answer we have several possibilities
* if the two masses are equal then L₂ = L
* If the masses are different, with M₂> M then L₂ = \frac{M}{M_{2}} L
Answer:
In a magnet, the domains all point in the same direction; in an ordinary piece of metal, they're all jumbled up.
Explanation:
In a magnet, the domains all point toward the north pole; in an ordinary piece of metal, they all point to the south pole.
Side note:
Hope this helps!
Please give Brainliest!
The solution for this problem is:
Let u denote speed.
Equating momentum before and after collision:
= 0.060 * 40 = (1.5 + 0.060) u
= 2.4 = 1.56 u
= 2.4 / 1.56 = 1.56 u / 1.56
= 1.6 m / s is the answer for this question. This is the speed after the collision.
Answer:

Explanation:
<u>Work and Kinetic Energy
</u>
The work an object does due to its motion is equal to the change of its kinetic energy. Being ko and k1 the initial and final kinetic energy respectively and m the mass of the object, then

Since

We have

The truck has a mass of 60,000 kg and is moving at 27 m/s. The runaway truck ramp must stop the truck, so the final speed is 0. Thus



The magnitude of the electric field at the third vertex of the triangle is determined as zero.
<h3>Electric field at the third vertex of the triangle </h3>
The electric field at the third vertex of the equilateral triangle due to the other charges placed on the first and second vertices is calculated as follows;
E = E(13) + E(23)
E = (kq₁)/r² + (kq₂)/r²
where;
- q1 is positive charge
- q2 is negative charge
E = (kq₁)/r² - (kq₂)/r²
E = 0
Thus, the magnitude of the electric field at the third vertex of the triangle is determined as zero.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1