Answer:
The active ingredients in baking soda (NaHCO3) are
and 
when Baking soda reacts with Acetic acid
Molecular equation
NaHCO3(aq) + CH3COOH(aq) → Na(CH3COO)(aq) + CO2(g) +H2O(l)
Ionic equation
→ 
as
is present on both sides so it will cancel out and the net ionic equation will be
→ 
The correct option is this: THE CONCENTRATION OF THE PRODUCTS AND THE REACTANTS DO NOT CHANGE.
A reversible chemical reaction is said to be in equilibrium if the rate of forward reaction is equal to the rate of backward reaction. At this stage, the concentrations of the products and the reactants remain constant, that is, there is no net change in the concentration even though the reacting species are moving between the forward and the backward reaction.
Answer:
The solution's new volume is 1.68 L
Explanation:
Dilution is the procedure to prepare a less concentrated solution from a more concentrated one, and simply consists of adding more solvent. So, in a dilution the amount of solute does not vary, but the volume of the solvent varies.
In summary, a dilution is a lower concentration solution than the original.
The way to do the calculations in a dilution is through the expression:
Ci*Vi=Cf*Vf
where C and V are concentration and volume, respectively; and the i and f subscripts indicate initial and final respectively.
In this case, being:
- Ci= 7 M
- Vi= 0.60 L
- Cf= 2.5 M
- Vf=?
Replacing:
7 M*0.60 L= 2.5 M* Vf
Solving:

Vf= 1.68 L
<u><em>The solution's new volume is 1.68 L</em></u>
Answer:
The thermodynamic parameter which is of significance in this case is the 'Reduction Potential' for molecular bromine which is ~ +1.1 v vs N.H.E. In other words, it is a strong oxidizing agent. The bromine will oxidize sulfur compounds in which the valence of sulfur is lower than six to sulfate.
There are many possible reactions. Here is one possible example:
Na2 S2O3 + 4Br2 + 5 H2O = 2NaHSO4 + 8 HBr