Answer:- Formula of the hydrate is
and it's name is Iron(III)sulfate pentahydrate.
Solution:- As per the given information, there is 18.4% water in the hydrate. If we assume the mass of the hydrate as 100 grams then there would be 18.4 grams of water and 81.6 grams of Iron(III)sulfate present in the hydrate.
Molar mass for Iron(III)sulfate is 399.88 gram per mol and the molar mass for water is 18.02 gram per mol.
We will calculate the moles of Iron(III)sulfate and water present in the compound on dividing their grams by their molar masses as:

= 

= 
Now, the next step is to calculate the mol ratio and for this we divide the moles of each by the least one of them means whose moles are less. Here, the moles of Iron(III)sulfate are less than moles of water. So, we divide the moles of each by 0.204.
= 1
= 5
There is 1:5 mol ratio between Iron(III)sulfate and water. So, the formula of the hydrate is
and the name of the hydrate is Iron(III)sulfate pentahydrate.
Answer:subtropical highs. ... Near the poles the pressure is high and it is known as the polar high. These pressure belts are not permanent in nature
Explanation: The horse latitudes are subtropical regions known for calm winds and little precipitation. ... Unable to sail and resupply due to lack of wind, crews often ran out of drinking water. To conserve scarce water, sailors on these ships would sometimes throw the horses they were transporting overboard.
Hope this was Helpful
It’s number 3 : decomposition and melting
<span>From the balanced equation:
4mol Fe will produce 2mol Fe2O3
Molar mass Fe = 55.847g/mol
16.7gFe = 16.7/55.847 = 0.3mol Fe
This will produce 0.15mol Fe2O3
Molar mass Fe2O3 = 159.6887 g/mol
0.15mol = 159.6887*0.15 = 23.95g Fe2O3 produced
Hope this helps</span>
The 2 represets 2 nitrogen gas atoms