Answer:
It sounds like they are studying French phonemes
Explanations:
I just learned this.
This uses something called <span>Le Chatelier's principle. It states essentially that any stress put upon a system will be corrected.
In more simple terms, it means that in an equilibrium, such as the equation N2(g) + 3H2(g) <=> 2NH3(g), removing a reactant will cause the system to create more of said reactant to compensate for its loss, or adding excess reactant will cause the system to remove some of the added reactant. For future reference, the same principle applies to products in an equilibrium as well.
In this case, hydrogen gas is a reactant, and hydrogen is being removed. According to </span><span>Le Chatelier's principle, the system will shift to create more hydrogen gas. In essence, it will shift in the direction of the hydrogen gas, so there will be a shift toward the reactants.
To clear something up, Keq will not change, as it is a constant value with constant conditions (such as temperature, pressure, etc.).</span>
You would have to dig up 261 g of sylvanite.
Mass of sylvanite = 73.0 g Au × (100 g sylvanite/28.0 g Au) = <em>261 g</em> sylvanite.
Answer:
1.06 V
Explanation:
The standard reduction potentials are:
Ag^+/Ag E° = 0.7996 V
Ni^2+/Ni E° = -0.257 V
The half-cell and cell reactions for Ni | Ni^2+ || Ag^+ | Ag are
Ni → Ni^2+ + 2e- E° = 0.257 V
<u>2Ag^+ 2e- → 2Ag </u> <u>E° = 0.7996 V
</u>
Ni + 2Ag^+ → Ni^2+ + 2Ag E° = 1.0566 V
To three significant figures, the standard potential for the cell is 1.06 V
.