1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klasskru [66]
3 years ago
6

A long, horizontal, pressurized hot water pipe of 15cm diameter passes through a room where the air temperature is 24degree C. T

he pipe surface temperature is 130 degree C and the emissivity of the surface is 0.95. Neglecting radiation loss from the pipe, what is the rate of the heat transfer to the room air per meter of pipe length
Engineering
1 answer:
solmaris [256]3 years ago
5 0

Answer:

Rate of heat transfer to the room air per meter of pipe length equals 521.99 W/m

Explanation:

Since it is given that the radiation losses from the pipe are negligible thus the only mode of heat transfer will be by convection.

We know that heat transfer by convection is given by

\dot{Q}=hA(T-T_{\infty })

where,

h = heat transfer coefficient = 10.45 W/m^{2}K (free convection in air)

A = Surface Area of the pipe

Applying the given values in the above formula we get

\dot{Q}=10.45\times \pi DL\times (130+273-(24+273))\\\\\frac{\dot{Q}}{L}=10.45\times 0.15\times \pi \times (130-24)\\\\\frac{\dot{Q}}{L}=521.99W/m

You might be interested in
A BOD test is run using 30 mL of wastewater and 270 mL of dilution water. The initial DO of the mixture is 9.0 mg/L. After 5 day
erma4kov [3.2K]

D Hey will you please help me with my essay and I’ll get back to yours please ASAP
3 0
3 years ago
Jjjjjmmmmmmmmmml.n;nLN/n/kn
GaryK [48]
Jjchdypyepyspgzlbblxlbxljkkvgigirudlh),,$&,‘joyful fhdjdududufjnbd
6 0
2 years ago
Which of these is a characteristic of a reform movement?
Reika [66]

Answer:

distinguished from more radical social such as revolutionary

7 0
3 years ago
.. You should
Darya [45]

Answer:

C.

Explanation:

You want to make sure it still works. You don't want to move it periodically though in case of an emergency.

5 0
2 years ago
Read 2 more answers
ASAE 1060 Steel wire (1 mm diameter) is coated with copper to form a composite with a diameter of 2mm. Use the following propert
k0ka [10]

Answer:

a) E_{m} = 133.75 Gpa

b) Fnet = 560 N

c) thermal expansion of the composite material = 14.31 10^{-6 } / °C

Explanation:

Solution:

a) Elastic Modulus of the composite:

Area of steel wire = \frac{\pi }{4} x (0.001^{2}) = 0.8 x 10^{-6} m^{2}

Area of Copper wire = \frac{\pi }{4} x (0.002^{2}) - 0.8 x 10^{-6} m^{2}

Area of Copper wire = 2.4 x 10^{-6} m^{2}

Young's Modulus of Composite mixture:

E_{m} = F_{st}E_{st} +  F_{Cu}E_{Cu}     Equation 1

here,

F_{st} = Stress in Steel

F_{Cu} = Stress in Copper.

We know that,

F = P/A

F is inversely proportional to Area, so if area is large, stress will less and vice versa. So, Take

Ratio for area of steel = \frac{0.8. 10^{-6} }{(0.8 + 2.4) .10^{-6} }

Ratio for area of steel = \frac{0.8}{3.2 } = 0.25

Similarly, for Copper,

Ratio for area of copper = \frac{2.4. 10^{-6} }{(0.8 + 2.4) .10^{-6} }

Ratio for area of copper = \frac{2.4 }{3.2} = 0.75

Put these values in equation 1:

E_{m} = F_{st}E_{st} +  F_{Cu}E_{Cu}    

E_{m} = (0.25) E_{st} +  (0.75)E_{Cu}

We are given that,

  E_{st} = 205 Gpa

E_{Cu}  = 110 Gpa

So,

E_{m} = (0.25) (205 Gpa) +  (0.75) (110 GPa)

E_{m} = 51.25GPa + 82.5 Gpa

Hence, the Elastic Modulus of the composite will be:

E_{m} = 133.75 Gpa

b) maximum force:

Fnet = Fst + Fcu

We know that F = (Yield Stress x Area)

F = fst x Ast + fcu x Acu

And we are given that,

Yield stress of Steel = 280 Mpa

Yield stress of Copper = 140 Mpa

And,

Ast = 0.8 x 10^{-6} m^{2}

Acu = 2.4 x 10^{-6} m^{2}

Just plugging in the values, we get:

F = (280 Mpa) (0.8 x 10^{-6} m^{2}) + (140 Mpa) (2.4 x 10^{-6} m^{2})

F = 224 + 336

Fnet = 560 N    ( because Mpa = 10^{6} N/m^{2})

So, it means the composite will carry the maximum force of 560N

c) Coefficient of Thermal Expansion:

Strain on both material is same upon loading so,

(ΔL/L)st = (ΔL/L)cu

by thermal expansion equation:

(\alpha .ΔT  + \frac{F}{A}. \frac{1}{Est}) = \alpha .ΔT  + \frac{F}{A}. \frac{1}{Ecu})

Where \alpha = Coefficient of Thermal expansion

Here, fst = -fcu = F

and ΔT = 1°

So,

Plugging in the values, we get.

( 10 x 10^{-6} x (1) + \frac{F}{0.8.10^{-6} } . \frac{1}{205 . 10^{9} } ) = ( 17 x 10^{-6} x (1) + \frac{-F}{2.4.10^{-6} } . \frac{1}{110 . 10^{9} } )

Solving for F, we get:

F = 0.71 N

Here,

fst = F = 0.71 N (Tension on Heating)

fcu = -F = 0.71 N ( Compression on Heating )

So, the combined thermal expansion of the composite material will be:

(ΔL/L)cu = ( 17 x 10^{-6} x (1°) + \frac{-0.71}{2.4.10^{-6} } . \frac{1}{110 . 10^{9} } )

(ΔL/L)cu = ( 17 x 10^{-6} x (1°) - 2.69 x 10^{-6}

combined thermal expansion of the composite material = 14.31 10^{-6 } / °C

4 0
2 years ago
Other questions:
  • A cylindrical specimen of this alloy 12.7 mm in diameter and 250 mm long is stressed in tension and found to elongate 7.6 mm. On
    5·1 answer
  • A 25-W compact fluorescent lightbulb (CFL) produces the light equivalent of a 100-W incandescent bulb. The population of North A
    14·1 answer
  • What was the main drawback of Ford’s assembly line?
    12·2 answers
  • Products. of sheet metal​
    8·1 answer
  • Essence of check line in chain surveying
    14·1 answer
  • Please what is dif<br>ference between building technology and building engineering.​
    14·2 answers
  • Close to 16 billion pounds of ethylene glycol (EG) were produced in 2013. It previously ranked as the twenty-sixth most produced
    8·1 answer
  • The section should span between 10.9 and 13.4 cm (4.30 and 5.30 inches) as measured from the end supports and should be able to
    5·1 answer
  • PROBLEM IN PICTURE HELP ME DEAR GODDDDDD UGHHH NONONO I HAVE 2 MINUTES TO FINISH THIS ❕❗️❕❗️❗️❕❕❕❕❗️❕❕❗️❕❗️❗️❗️❕‼️‼️‼️‼️❗️‼️❗️
    11·2 answers
  • Match the scenario to the problem-solving step it represents.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!