1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad [161]
3 years ago
14

Find all the words, Figure out my puzzle!

Engineering
2 answers:
Mandarinka [93]3 years ago
5 0

Answer:

I found the word!

It was Free points.

Alinara [238K]3 years ago
5 0
Did fake salt Felix turtle ninja Alice friend
You might be interested in
Water at 15°C is to be discharged from a reservoir at a rate of 18 L/s using two horizontal cast iron pipes connected in series
love history [14]

Answer:

The required pumping head is 1344.55 m and the pumping power is 236.96 kW

Explanation:

The energy equation is equal to:

\frac{P_{1} }{\gamma } +\frac{V_{1}^{2}  }{2g} +z_{1} =\frac{P_{2} }{\gamma } +\frac{V_{2}^{2}  }{2g} +z_{2}+h_{i} -h_{pump} , if V_{1} =0,z_{2} =0\\h_{pump} =\frac{V_{2}^{2}}{2} +h_{i}-z_{1}

For the pipe 1, the flow velocity is:

V_{1} =\frac{Q}{\frac{\pi D^{2} }{4} }

Q = 18 L/s = 0.018 m³/s

D = 6 cm = 0.06 m

V_{1} =\frac{0.018}{\frac{\pi *0.06^{2} }{4} } =6.366m/s

The Reynold´s number is:

Re=\frac{\rho *V*D}{u} =\frac{999.1*6.366*0.06}{1.138x10^{-3} } =335339.4

\frac{\epsilon }{D} =\frac{0.00026}{0.06} =0.0043

Using the graph of Moody, I will select the f value at 0.0043 and 335339.4, as 0.02941

The head of pipe 1 is:

h_{1} =\frac{V_{1}^{2}  }{2g} (k_{L}+\frac{fL}{D}  )=\frac{6.366^{2} }{2*9.8} *(0.5+\frac{0.0294*20}{0.06} )=21.3m

For the pipe 2, the flow velocity is:

V_{2} =\frac{0.018}{\frac{\pi *0.03^{2} }{4} } =25.46m/s

The Reynold´s number is:

Re=\frac{\rho *V*D}{u} =\frac{999.1*25.46*0.03}{1.138x10^{-3} } =670573.4

\frac{\epsilon }{D} =\frac{0.00026}{0.03} =0.0087

The head of pipe 1 is:

h_{2} =\frac{V_{2}^{2}  }{2g} (k_{L}+\frac{fL}{D}  )=\frac{25.46^{2} }{2*9.8} *(0.5+\frac{0.033*36}{0.03} )=1326.18m

The total head is:

hi = 1326.18 + 21.3 = 1347.48 m

The required pump head is:

h_{pump} =\frac{25.46^{2} }{2*9.8} +1347.48-36=1344.55m

The required pumping power is:

P=Q\rho *g*h_{pump}  =0.018*999.1*9.8*1344.55=236965.16W=236.96kW

8 0
3 years ago
How does the clearance volume affect the efficiency of the Otto cycle?
eduard

Answer:

Explanation:

A smaller clearance volume means a higher compression. A higher compression means better thermal efficiency. However a compression ratio too high might be troublesome, as it can cause accidental ignition of the fuel-air mix. This is the reason why Otto cycle engines have lower compressions that Diesel engines. In a Diesel engine the mix ignites by compression instead of a spark.

7 0
2 years ago
A large particle composite consisting of tungsten particles within a copper matrix is to be prepared. If the volume fractions of
OverLord2011 [107]

Answer:

Upper bounds 22.07 GPa

Lower bounds 17.59 GPa

Explanation:

Calculation to estimate the upper and lower bounds of the modulus of this composite.

First step is to calculate the maximum modulus for the combined material using this formula

Modulus of Elasticity for mixture

E= EcuVcu+EwVw

Let pug in the formula

E =( 110 x 0.40)+ (407 x 0.60)

E=44+244.2 GPa

E=288.2GPa

Second step is to calculate the combined specific gravity using this formula

p= pcuVcu+pwTw

Let plug in the formula

p = (19.3 x 0.40) + (8.9 x 0.60)

p=7.72+5.34

p=13.06

Now let calculate the UPPER BOUNDS and the LOWER BOUNDS of the Specific stiffness

UPPER BOUNDS

Using this formula

Upper bounds=E/p

Let plug in the formula

Upper bounds=288.2/13.06

Upper bounds=22.07 GPa

LOWER BOUNDS

Using this formula

Lower bounds=EcuVcu/pcu+EwVw/pw

Let plug in the formula

Lower bounds =( 110 x 0.40)/8.9+ (407 x 0.60)/19.3

Lower bounds=(44/8.9)+(244.2/19.3)

Lower bounds=4.94+12.65

Lower bounds=17.59 GPa

Therefore the Estimated upper and lower bounds of the modulus of this composite will be:

Upper bounds 22.07 GPa

Lower bounds 17.59 GPa

7 0
2 years ago
The Stefan-Boltzmann law can be employed to estimate the rate of radiation of energy H from a surface, as in
Mazyrski [523]

Explanation:

A.

H = Aeσ^4

Using the stefan Boltzmann law

When we differentiate

dH/dT = 4AeσT³

dH/dT = 4(0.15)(0.9)(5.67)(10^-8)(650)³

= 8.4085

Exact error = 8.4085x20

= 168.17

H(650) = 0.15(0.9)(5.67)(10^-8)(650)⁴

= 1366.376watts

B.

Verifying values

H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(670)⁴

= 1542.468

H(T+ΔT) = 0.15(0.9)(5.67)(10^-8)(630)⁴

= 1205.8104

Error = 1542.468-1205.8104/2

= 168.329

ΔT = 40

H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(690)⁴

= 1735.05

H(T-ΔT) = 0.15(0.9)(5.67)(10^-8)(610)⁴

= 1735.05-1059.83/2

= 675.22/2

= 337.61

5 0
3 years ago
In the circuit below I 1=20mA V1=10 R1=400 R2=2000 R3=1000. Use node analysis to find R2
Hatshy [7]

Answer:0.2A

Explanation:

First, write KCL

i1-i2-i3=0

Then, replace currents with viltages and resistors.

V2-10v/100-v2/200-v2/400=0

V2-40=0

V2=40v

I hope it was helpful

6 0
3 years ago
Other questions:
  • Given the unity feedback system
    5·1 answer
  • The flatbed truck carries a large section of circular pipe secured only by the two fixed blocks A and B of height h. The truck i
    14·2 answers
  • For problems 1 and 2, six luminaires, similar to Style E used in the Commercial Building, are to be installed in a room that is
    13·1 answer
  • A stone-filled pit used for waste disposal is commonly referred to as a
    15·1 answer
  • Explain why you chose the final design of your prototype and how it solved the identified need
    9·1 answer
  • Why it is important to prepare first the materials and tools carpentry before doing the tasks?​
    6·2 answers
  • Which of the following activities could be considered unethical?
    7·1 answer
  • What Are 2 Properties electromagnets have that permanent magnets do not?
    8·2 answers
  • Principals of Construction intro
    11·1 answer
  • Assume the availability of an existing class, ICalculator, that models an integer arithmetic calculator and contains: an instanc
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!