M = n / V
Where, M is molarity (M or mol/L), n is number of moles of the solute (mol) and V is volume of the solution (L).
Here the solute is KNO₃.
The given molarity is 1.3 M
This means 1L of solution has 1.3 moles of KNO₃.
Hence moles in 600 mL = 1.3 M x 0.6 L = 0.78 mol
Therefore to make 1.3 M KNO₃ solution, needed moles of KNO₃ is 0.78 mol
Well a question to ask would be if the mass of the material has changed significantly as that would determine that the substance is radioactive or if there have been any high readings found by a Geiger meter in certain period of time
hope that helps
Explanation:
Both cohesion and molecular interchange contribute to liquid viscosity. The impact of increasing the temperature of a liquid is to reduce the cohesive forces while simultaneously increasing the rate of molecular interchange. The former effect causes a decrease in the shear stress while the latter causes it to increase.
temperature?
The viscosity of liquids decreases rapidly with an increase in temperature, and the viscosity of gases increases with an increase in temperature. Thus, upon heating, liquids flow more easily, whereas gases flow more sluggishly.
mark as brainliest
The charge of this atom would be -2