Answer:
1. V₁ = 2.0 mL
2. V₁ = 2.5 mL
Explanation:
<em>You are provided with a stock solution with a concentration of 1.0 × 10⁻⁵ M. You will be using this to make two standard solutions via serial dilution.</em>
To calculate the volume required (V₁) in each dilution we will use the dilution rule.
C₁ . V₁ = C₂ . V₂
where,
C are the concentrations
V are the volumes
1 refers to the initial state
2 refers to the final state
<em>1. Perform calculations to determine the volume of the 1.0 × 10⁻⁵ M stock solution needed to prepare 10.0 mL of a 2.0 × 10⁻⁶ M solution.</em>
C₁ . V₁ = C₂ . V₂
(1.0 × 10⁻⁵ M) . V₁ = (2.0 × 10⁻⁶ M) . 10.0 mL
V₁ = 2.0 mL
<em>2. Perform calculations to determine the volume of the 2.0 × 10⁻⁶ M solution needed to prepare 10.0 mL of a 5.0 × 10⁻⁷ M solution.</em>
C₁ . V₁ = C₂ . V₂
(2.0 × 10⁻⁶ M) . V₁ = (5.0 × 10⁻⁷ M) . 10.0 mL
V₁ = 2.5 mL
Answer:
A. tungsten
Explanation:
Tungsten is a material which high melting point ie. does not melt easily incase of high temperature
Answer:
False.
Explanation:
I am not completely sure, but I don't believe the earth is getting larger.
Answer:
0.1113 mol
Explanation:
Data Given:
no. of atoms of CH₄= 6.70 x 10²² atoms
no. of moles of methane (CH₄) = ?
Solution:
we will find no. of moles of methane (CH₄)
Formula used
no. of moles = no. of atoms / Avogadro's number
Where
Avogadro's number = 6.022 x 10²³
Put values in above equation
no. of moles = 6.70 x 10²² atoms / 6.022 x 10²³ (atoms/mol)
no. of moles = 0.1113 mol
So,
There are 0.1113 moles of methane.
VSEPR notation gives a general formula for classifying chemical species based on the number of electron pairs around a central atom. However, not all species have the same molecules.
For example, carbon dioxide and surfer dioxide are both species, but one is linear and another one is bent.