Just read the back of the cake box
Let
be the height of the building and thus the initial height of the ball. The ball's altitude at time
is given by

where
is the acceleration due to gravity.
The ball reaches the ground when
after
. Solve for
:


so the building is about 16 m tall (keeping track of significant digits).
The maximum force of static friction is the product of normal force (P) and the coefficient of static friction (c). In a flat surface, normal force is equal to the weight (W) of the body.
P = W = mass x acceleration due to gravity
P = (0.3 kg) x (9.8 m/s²) = 2.94 kg m/s² = 2.94 N
Solving for the static friction force (F),
F = P x c
F = (2.94 N) x 0.6 = 1.794 N
Therefore, the maximum force of static friction is 1.794 N.
Answer:
a) v = 2,9992 10⁸ m / s
, b) Eo = 375 V / m
, B = 1.25 10⁻⁶ T,
c) λ = 3,157 10⁻⁷ m, f = 9.50 10¹⁴ Hz
, T = 1.05 10⁻¹⁵ s
, UV
Explanation:
In this problem they give us the equation of the traveling wave
E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]
a) what the wave velocity
all waves must meet
v = λ f
In this case, because of an electromagnetic wave, the speed must be the speed of light.
k = 2π / λ
λ = 2π / k
λ = 2π / 1.99 10⁷
λ = 3,157 10⁻⁷ m
w = 2π f
f = w / 2 π
f = 5.97 10¹⁵ / 2π
f = 9.50 10¹⁴ Hz
the wave speed is
v = 3,157 10⁻⁷ 9.50 10¹⁴
v = 2,9992 10⁸ m / s
b) The electric field is
Eo = 375 V / m
to find the magnetic field we use
E / B = c
B = E / c
B = 375 / 2,9992 10⁸
B = 1.25 10⁻⁶ T
c) The period is
T = 1 / f
T = 1 / 9.50 10¹⁴
T = 1.05 10⁻¹⁵ s
the wavelength value is
λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm
this wavelength corresponds to the ultraviolet