Answer:
13.5
Explanation:
x= Length
.5 = Center Point
x=0.5(9)= 4.5
So total length over the edge will be given as
Length (L) =9+4.5=13.5
Answer:
Explanation:
A car travels 6.0 km to the north and then 8.0 km to the east. The intensity of the position vector, in relation to the starting point is: a) 14 km b) 2.0 km c) 12 km d) 10 km e) 8.0 km
Check attachment for diagram
The intensity of the position vector is equal to the displacement,
So, to calculate the displacement, we need to find the length of the straight line from starting point to end point.
So, applying Pythagorean theorem
c² = a² + b²
R² = 6² + 36²
R² = 36 + 64
R² = 100
R = √100
R = 10 km.
Verifique el adjunto para ver el diagrama
La intensidad del vector de posición es igual al desplazamiento,
Entonces, para calcular el desplazamiento, necesitamos encontrar la longitud de la línea recta desde el punto inicial hasta el punto final.
Entonces, aplicando el teorema de Pitágoras
c² = a² + b²
R² = 6² + 36²
R² = 36 + 64
R² = 100
R = √100
R = 10 km.
By "solution" it means a course of action that, once carried out, brings about some desired state of affairs. The use of engineer in this context is as a verb meaning "to arrange or bring about through skillful, artful contrivance."
Answer: 4.86
Explanation:
sphere moment of Inertia Iₑ = (2/5)mrₑ²
Let the sphere of radius 1.59 cm be x
Let the spherical shell of radius 7.72 cm be y, so that
Iₑ(x) = 2/5 * m * 1.59²
Iₑ(x) = 2/5 * m * 2.5281
Iₑ(x) = 1.011m
Iₑ(y) = 2/5 * m * 7.72²
Iₑ(y) = 2/5 * m * 59.5984
Iₑ(y) = 23.84m
Also, the angular speed of the sphere's would be ωₑ(x) and ωₑ(y)
total k.e = rotational k.e + linear k.e
for sphere = ½Iₑωₑ² + ½mωₑ²rₑ²
For sphere x
{ωₑ²[ 1.011 + 1.59²]} =
ωₑ²(1.011 + 2.5281) =
ωₑ²(3.5391)
For sphere y
{ωₑ²[ 23.84 + 7.72²]} =
ωₑ²(23.84 + 59.5984) =
ωₑ²(83.4384)
If the ratio of x/y = 1, then
ωₑ(x)²(3.5391) / ωₑ(y)²(83.4384) = 1
ωₑ(x)²(3.5391) = ωₑ(y)²(83.4384)
[ωₔ(x)/ωₑ(y)]² = [83.4384] / [3.5391] ~= 23.5762
[ωₔ(x)/ωₑ(y)] = √(23.5762)
[ωₔ(x)/ωₑ(y)] = 4.86