Answer: µ=0.205
Explanation:
The horizontal forces acting on the ladder are the friction(f) at the floor and the normal force (Fw) at the wall. For horizontal equilibrium,
f=Fw
The sum of the moments about the base of the ladder Is 0
ΣM = 0 = Fw*L*sin74.3º - (25.8kg*(L/2) + 67.08kg*0.82L)*cos74.3º*9.8m/s²
Note that it doesn't matter WHAT the length of the ladder is -- it cancels.
Solve this for Fw.
0= 0.9637FwL - (67.91L)2.652
Fw=180.1/0.9637
Fw=186.87N
f=186.81N
Since Fw=f
We know Fw, so we know f.
But f = µ*Fn
where Fn is the normal force at the floor --
Fn = (25.8 + 67.08)kg * 9.8m/s² =
910.22N
so
µ = f / Fn
186.81/910.22
µ= 0.205
Answer:
1 P = 0.5
2 P = 0.3
3 P = 0.01
Explanation:
The probability formula is

Where P is the probability V is the volume while N is the number of distinguishing particles
So for N = 1 and 

= 0.5
For N = 1 and 

= 0.3
For N = 1 and 

= 0.01
Answer:
Zeros that follow non-zero numbers and are also to the right of a decimal point are significant.
Explanation:
For example:
0.300 has 3 significant figures.
5.400 has 4 significant figures.
Answer:
- <u>77.8 m/s, downward</u>
Explanation:
For uniform acceleration motion, the average speed is equal to half the soum of the initial velocity, Vi, and the final velocity, Vf
- Average speed = (Vf + Vi)/2
Also, by definition, the average speed is the distance divided by the time:
- Average speed = distance / time
Then:
Other kinematic equation for uniform acceleration is:
Since the window is falling and the air resistance is ignored, a = g (gravitational acceleration ≈ 9.8m/s²)
Replacing the known values we can set a system of two equations:
From (Vf + Vi)/2 = 300m/6.62s
(Vf + Vi) = 2 × 300m/6.62s
- Vf + Vi = 90.634 equation 1
From Vf = Vi + a×t
Vf - Vi = 9.8 (6.62)
- Vf - Vi = 64.876 equation 2
Adding the two equations:
- Vf = 77.8 m/s downward (velocities must be reported with their directions)
Answer: Volume of a gas is inversely proportional to pressure of that gas in any container.
Explanation:
Hi, according to Boyle's Gas law, the volume of a gas is inversely proportional to the pressure of that gas, at a constant temperature.
The expression is:
P1.V1= P2.V2
V= 1/P
PV = k
Where:
P = pressure of a gas
V = volume of a gas
k = constant
Feel free to ask for more if needed or if you did not understand something.