Explanation:
A) Use Hooke's law to find the spring constant.
F = kx
40 N = k (0.4 m)
k = 100 N/m
B) Period of a spring-mass system is:
T = 2π √(m / k)
T = 2π √(2.6 kg / 100 N/m)
T = 1 s
Frequency is the inverse of period.
f = 1 / T
f = 1 Hz
Answer:
D
Explanation:
For this kind of problem, forces add. F = F1 + F2
F1 = 6 N
F2 = 10 N
F = 6N + 10N
F = 16N
Electric field, an electric property associated with each point in space when charge is present in any form. The magnitude and direction of the electric field are expressed by the value of E, called electric field strength or electric field intensity or simply the electric field.
Magnetic field are a region around a magnetic material or a moving electric charge within which the force of magnetism acts. Magnetic fields are produced by moving electric charges. Everything is made up of atoms, and each atom has a nucleus made of neutrons and protons with electrons that orbit around the nucleus. Since the orbiting electrons are tiny moving charges, a small magnetic field is created around each atom.
Similarities between magnetic fields and electric fields: Magnetic fields are associated with two magnetic poles, north and south, although they are also produced by charges (but moving charges). Like pole repel unlike poles attract. Electric field points in the direction of the force experienced by a positive charge.
Answer:
"A blackbody is an object that absorbs all of the radiation that it receives(that is,it does not reflect any light,nor does it allow any light to pass through it and out the other side).The energy that the blackbody absorbs heats it up,and then it will emit its own radiation."
Explanation:
Risk*
Answer:
5) 13 revolutions (approximately)
Explanation:
We apply the equations of circular motion uniformly accelerated :
ωf²= ω₀² + 2α*θ Formula (1)
Where:
θ : angle that the body has rotated in a given time interval (rad)
α : angular acceleration (rad/s²)
ω₀ : initial angular speed ( rad/s)
ωf : final angular speed ( rad/s)
Data:
ω₀ = 18 rad/s
ωf = 0
α = -2 rad/s² ; (-) indicates that the wheel is slowing
Revolutions calculation that turns the wheel until it stops
We apply the formula (1)
ωf²= ω₀² + 2α*θ
0 = (18)² + 2( -2)*θ
4*θ = (18)²
θ = (18)²/4 = 81 rad
1 revolution = 2π rad
θ = 81 rad * 1 revolution / 2πrad
θ = 13 revolutions approximately