Answer:
f'=5.58kHz
Explanation:
This is an example of the Doppler effect, the formula is:

Where f is the actual frequency,
is the observed frequency,
is the velocity of the sound waves,
the velocity of the observer (which is negative if the observer is moving away from the source) and
the velocity of the source (which is negative if is moving towards the observer). For this problem:


Answer:
1 Ampere.
Explanation:
From the question given above, the following data were obtained:
Resistor 1 (R₁) = 20 ohm
Resistor (R₂) = 20 ohm
Voltage (V) = 10 V
Current (I) =?
Next, we shall determine the equivalent resistance in the circuit. This can be obtained as follow:
Resistor 1 (R₁) = 20 ohm
Resistor (R₂) = 20 ohm
Equivalent Resistance (R) =?
Since the resistors are in parallel connection, the equivalent resistance can be obtained as follow:
R = (R₁ × R₂) / (R₁ + R₂)
R = (20 × 20) / (20 + 20)
R = 400 / 40
R = 10 ohm
Finally, we shall determine the total current in the circuit. This can be obtained as illustrated below:
Voltage (V) = 10 V
Equivalent Resistance (R) = 10 ohm
Current (I) =?
V = IR
10 = I × 10
Divide both side by 10
I = 10 / 10
I = 1 Ampere
Therefore, the total current in the circuit is 1 Ampere.
The study of sound is called sonics and the study of sound waves are acoustics
<span>d. scientific theories summarize patterns found in nature
Hope this helps!</span>
In a third class lever, the effort is located between the load and the fulcrum. If the fulcrum is closer to the load, then less effort is needed to move the load. If the fulcrum is closer to the effort, then the load will move a greater distance. ... These levers are useful for making precise movements.