1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fomenos
3 years ago
6

In almost all cases, touching power lines or coming into contact with energized sources will result in what?

Engineering
1 answer:
Fynjy0 [20]3 years ago
6 0

Answer:

electrocution

Explanation:

You will end up getting shoked because the electricity is attracted to the water in your body.

You might be interested in
Source 1 can supply energy at the rate of 11000 kJ/min at 310°C. A second Source 2 can supply energy at the rate of 110000 kJ/mi
VladimirAG [237]

Answer:

Source 2.

Explanation:

The efficiency of the ideal reversible heat engine is given by the Carnot's power cycle:

\eta_{th} = 1 - \frac{T_{L}}{T_{H}}

Where:

T_{L} - Temperature of the cold reservoir, in K.

T_{H} - Temperature of the hot reservoir, in K.

The thermal efficiencies are, respectively:

Source 1

\eta_{th} = 1 - \frac{311.15\,K}{583.15\,K}

\eta_{th} = 0.466 \,(46.6\,\%)

Source 2

\eta_{th} = 1 - \frac{311.15\,K}{338.15\,K}

\eta_{th} = 0.0798 \,(7.98\,\%)

The power produced by each device is presented below:

Source 1

\dot W = (0.466)\cdot (11000\,\frac{kJ}{min})\cdot (\frac{1\,min}{60\,s} )

\dot W = 85.433\,kW

Source 2

\dot W = (0.0798)\cdot (110000\,\frac{kJ}{min})\cdot (\frac{1\,min}{60\,s} )

\dot W = 146.3\,kW

The source 2 produces the largest amount of power.

8 0
3 years ago
Vehicles begin arriving at an amusement park 1 hour before the park opens, at a rale of four vehicles per minute. The gale to th
Alina [70]

Answer:

a) ≈ 30 mins

b) 8 vpm

Explanation:

<u>a) Determine how long after the first vehicle arrival will the queue dissipate</u>

The time after the arrival of the first vehicle for the queue to dissipate

= 29.9 mins ≈ 30 mins

<u>b) Determine the average service rate at the parking lot gate </u>

U = A / t

where : A = 240 vehicles , t = 30

U = 240 / 30 = 8 Vpm

attached below is a detailed solution of the given problems above

3 0
3 years ago
An adiabatic air compressor compresses 10 L/s of air at 120 kPa and 20 degree C to 1000 kPa and 300 degree C.
Oksana_A [137]

Answer:

work=281.4KJ/kg

Power=4Kw

Explanation:

Hi!

To solve follow the steps below!

1. Find the density of the air at the entrance using the equation for ideal gases

density=\frac{P}{RT}

where

P=pressure=120kPa

T=20C=293k

R= 0.287 kJ/(kg*K)= gas constant ideal for air

density=\frac{120}{(0.287)(293)}=1.43kg/m^3

2.find the mass flow by finding the product between the flow rate and the density

m=(density)(flow rate)

flow rate=10L/s=0.01m^3/s

m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s

3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow

Work

w=Cp(T1-T2)

Where

Cp= specific heat for air=1.005KJ/kgK

w=work

T1=inlet temperature=20C

T2=outlet temperature=300C

w=1.005(300-20)=281.4KJ/kg

Power

W=mw

W=(0.0143)(281.4KJ/kg)=4Kw

5 0
3 years ago
Determine the enthalpy, volume and density of 1.0 kg of steam at a pressure of 0.5 MN/m2 and with a dryness fraction of 0.96
Viktor [21]

Answer:

Enthalpy, hsteam = 2663.7 kJ/kg

Volume, Vsteam = 0.3598613 m^3 / kg

Density = 2.67 kg/ m^3

Explanation:

Mass of steam, m = 1 kg

Pressure of the steam, P = 0.5 MN/m^2

Dryness fraction, x = 0.96

At P = 0.5 MPa:

Tsat = 151.831°C

Vf = 0.00109255 m^3 / kg

Vg = 0.37481 m^3 / kg

hf = 640.09 kJ/kg

hg = 2748.1 kJ/kg

hfg = 2108 kJ/kg

The enthalpy can be given by the formula:

hsteam = hf + x * hfg

hsteam = 640.09 + ( 0.96 * 2108)

hsteam = 2663.7 kJ/kg

The volume of the steam can be given as:

Vsteam = Vf + x(Vg - Vf)

Vsteam = 0.00109255 + 0.96(0.37481 - 640.09)

Vsteam = 0.3598613 m^3 / kg

From the steam table, the density of the steam at a pressure of 0.5 MPa is 2.67 kg/ m^3

5 0
3 years ago
A solid shaft and a hollow shaft of the same material have same length and outer radius R. The inner radius of the hollow shaft
alexandr402 [8]

Answer with Explanation:

By the equation or Torque we have

\frac{T}{I_{p}}=\frac{\tau }{r}=\frac{G\theta }{L}

where

T is the torque applied on the shaft

I_{p} is the polar moment of inertia of the shaft

\tau is the shear stress developed at a distance 'r' from the center of the shaft

\theta is the angle of twist of the shaft

'G' is the modulus of rigidity of the shaft

We know that for solid shaft I_{p}=\frac{\pi R^4}{2}

For a hollow shaft I_{p}=\frac{\pi (R_o^4-R_i^4)}{2}

Since the two shafts are subjected to same torque from the relation of Torque we have

1) For solid shaft

\frac{2T}{\pi R^4}\times r=\tau _{solid}

2) For hollow shaft we have

\tau _{hollow}=\frac{2T}{\pi (R^4-0.7R^4)}\times r=\frac{2T}{\pi 0.76R^4}

Comparing the above 2 relations we see

\frac{\tau _{solid}}{\tau _{hollow}}=0.76

Similarly for angle of twist we can see

\frac{\theta _{solid}}{\theta _{hollow}}=\frac{\frac{LT}{I_{solid}}}{\frac{LT}{I_{hollow}}}=\frac{I_{hollow}}{I_{solid}}=1.316

Part b)

Strength of solid shaft = \tau _{max}=\frac{T\times R}{I_{solid}}

Weight of solid shaft =\rho \times \pi R^2\times L

Strength per unit weight of solid shaft = \frac{\tau _{max}}{W}=\frac{T\times R}{I_{solid}}\times \frac{1}{\rho \times \pi R^2\times L}=\frac{2T}{\rho \pi ^2R^5L}

Strength of hollow shaft = \tau '_{max}=\frac{T\times R}{I_{hollow}}

Weight of hollow shaft =\rho \times \pi (R^2-0.7R^2)\times L

Strength per unit weight of hollow shaft = \frac{\tau _{max}}{W}=\frac{T\times R}{I_{hollow}}\times \frac{1}{\rho \times \pi (R^2-0.7^2)\times L}=\frac{5.16T}{\rho \pi ^2R^5L}

Thus \frac{Strength/Weight _{hollow}}{Strength/Weight _{Solid}}=5.16

3 0
4 years ago
Other questions:
  • How long does it take to build a steam engine?
    10·1 answer
  • 99 POINTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    15·2 answers
  • For an automotive spark-ignition engine, the combustion duration (from time of ignition through completion) is approximately one
    11·1 answer
  • Technician A says that UHSS is designed to absorb collision energy.
    13·1 answer
  • What is a motor and were it goes in. A car
    15·1 answer
  • PLEASE HELP ME! THIS QUESTION IS PART OF AN ASSIGNMENT THAT IS DUE TODAY! I DON'T UNDERSTAND HOW TO DO THIS QUESTION! PLEASE HEL
    12·1 answer
  • Wich muscle in your body are affected by alcohol first
    7·1 answer
  • Which of the following identifies the beginning phase of the engineering design process?
    14·1 answer
  • 2. The moist weight of 0.1 ft3 of soil is 12.2 lb. If the moisture content is 12% and the specific gravity of soil solids is 2.7
    6·1 answer
  • On the pavement indicate that the adjacent lane is traveling in the same direction and passing is permitted
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!