Answer:
Note that Air requires lesser work
Explanation:
Calculate for general work done
SInce Gas constant 'R' for: Neon = 0.4119KJ/kg.k , and Air = 0.287 kJ/kg·K
Calculate for work done of NEON
Calculate for work done of Air
See solution attached.
Answer:
It should be in Park or Neutral.
Explanation:
Answer:
Absolute pressure=70.72 KPa
Explanation:
Given that Vacuum gauge pressure= 30 KPa
Barometer reading =755 mm Hg
We know that barometer always reads atmospheric pressure at given situation.So atmospheric pressure is equal to 755 mm Hg.
We know that P= ρ g h
Density of 
So P=13600 x 9.81 x 0.755
P=100.72 KPa
We know that
Absolute pressure=atmospheric pressure + gauge pressure
But here given that 30 KPa is a Vacuum pressure ,so we will take it as negative.
Absolute pressure=atmospheric pressure + gauge pressure
Absolute pressure=100.72 - 30 KPa
So
Absolute pressure=70.72 KPa
Answer:
The speed of shaft is 1891.62 RPM.
Explanation:
given that
Amplitude A= 0.15 mm
Acceleration = 0.6 g
So
we can say that acceleration= 0.6 x 9.81

We know that

So now by putting the values



We know that
ω= 2πN/60
198.0=2πN/60
N=1891.62 RPM
So the speed of shaft is 1891.62 RPM.
Answer:
The temperature attains equilibrium with the surroundings.
Explanation:
When the light bulb is lighted we know that it's temperature will go on increasing as the filament of the bulb has to constantly dissipates energy during the time in which it is on. Now this energy is dissipated as heat as we know it, this heat energy is absorbed by the material of the bulb which is usually made up of glass, increasing it's temperature. Now we know that any object with temperature above absolute zero has to dissipate energy in form of radiations.
Thus we conclude that the bulb absorbs as well as dissipates it's absorbed thermal energy. we know that this rate is dependent on the temperature of the bulb thus it the temperature of the bulb does not change we can infer that an equilibrium has been reached in the above 2 processes i.e the rate of energy absorption equals the rate of energy dissipation.
Steady state is the condition when the condition does not change with time no matter whatever the surrounding conditions are.