Answer:
a) C= 1/120
b) P(X>=5) = 0.333
Explanation:
The attached file contains the explanation for the answers
Answer:
180 x 60 inches
Width = 60 inches
Length = 180 inches
Explanation:
Given
Let L = Length
W = Width
P = Perimeter
Length = 3 * Width
L = 3W
Perimeter of Brass = 480 inches
P = 480
Perimeter is given as 2(L + W);
So, 2 (L + W) = 480
L + W = 480/2
L + W = 240
Substitute 3W for L; so,
3W + W = 240
4W = 240
W = 240/4
W = 60 inches
L = 3W
L = 3 * 60
L = 180 inches
If it is. DC, direct current reverse the polarity of power leads on the motor.
If it is a 3 phase ac alternating current, reverse any of the two of three leads.
Disconnect power before attempting.
Answer:
a) 

b)

Explanation:
Given that:
diameter d = 12 in
thickness t = 0.25 in
the radius = d/2 = 12 / 2 = 6 in
r/t = 6/0.25 = 24
24 > 10
Using the thin wall cylinder formula;
The valve A is opened and the flowing water has a pressure P of 200 psi.
So;




b)The valve A is closed and the water pressure P is 250 psi.
where P = 250 psi






The free flow body diagram showing the state of stress on a volume element located on the wall at point B is attached in the diagram below
Answer:
Explanation:
Given conditions
1)The stress on the blade is 100 MPa
2)The yield strength of the blade is 175 MPa
3)The Young’s modulus for the blade is 50 GPa
4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.
5)The temperature of the blade is 800°C.
6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)
where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K
Young Modulus, E = Stress,
/Strain, ∈
initial Strain, 


creep rate in the steady state


but Tinitial = 0


solving the above equation,
we get
Tfinal = 2459.82 hr