Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.
Answer:
μ=0.329, 2.671 turns.
Explanation:
(a) ln(T2/T1)=μβ β=angle of contact in radians
take T2 as greater tension value and T1 smaller, otherwise the friction would be opposite.
T2=5000 lb and T1=80 lb
we have two full turns which makes total angle of contact=4π radians
μ=ln(T2/T1)/β=(ln(5000/80))/4π
μ=0.329
(b) using the same relation as above we will now compute the angle of contact.
take greater tension as T2 and smaller as T1.
T2=20000 lb T1=80 lb μ=0.329
β=ln(20000/80)/0.329=16.7825 radians
divide the angle of contact by 2π to obtain number of turns.
16.7825/2π =2.671 turns
Answer:
I am in 6th grade why am i in high school things.
Explanation:
Answer:
The FSM uses the states along with the generation at the P output on each of the positive edges of the CLK. The memory stores the previous state in the machine and the decoder generates a P output based on the previous state.
Explanation:
The code is in the image.