Answer:
most commonly occurs because of the frequent pumping of water from the ground.
Explanation:
V o = 6 m/s,
t = 2 s
v = 10 m/s
v = v o + a t
a t = v - v o
a = ( v - v o ) / t
a = ( 10 m/s - 6 m/s ) / 2 s = 4 m/s / 2 s = 2 m/s²
Answer:
The runner`s acceleration is 2 m/s².
Answer:
Part a)
When spring compressed by 2 cm
H = 1.47 m
Part b)
When spring is compressed by 4 cm
H = 5.94 m
Explanation:
Part a)
As we know that the spring is compressed and released
so here spring potential energy is converted into gravitational potential energy at its maximum height
So we will have


so we have

Part b)
Similarly when spring is compressed by 4 cm
then we have


so we have

Answer:
Tissues that are damaged or injured.
Explanation:
Dystrophic calcification involves the deposition of calcium in soft tissues despite no disturbance in the calcium metabolism, and this is often seen at damaged tissues.
Examples of areas in the body where dystrophic calcification can occur include atherosclerotic plaques and damaged heart valves.
Answer:
Explanation:
Let l be th length of pendulum
loss of height
= mg ( l - l cos50)
= mg l ( 1-cos50)
1/2 mv² = mgl ( 1-cos50)
v = √[2gl( 1- cos50)]
= √( 2 x 9.8 x .7 x ( 1-cos50)
= 2.2 m / s
speed at the bottom = 2.2 m /s
b )
centripetal acceleration
= v² / r
= 2.2 x 2.2 / .7
= 6.9 m /s²
C )
If T be the tension
T - mg = mv² / r
T = mg + mv² / r
= .13 X 9.8 + .13 X 6.9
= 2.17 N