''When the quantity demanded intersect with quantity supplied, it leads o the formation of equilibrium point.''
<h3>How equilibrium occur?</h3>
The equilibrium price and equilibrium quantity occur where the supply and demand curves cross with each other. The equilibrium occurs when the quantity demanded is equal to the quantity supplied.
So we can conclude that when the quantity demanded intersect with quantity supplied, it leads o the formation of equilibrium point.
Learn more about equilibrium here: brainly.com/question/517289
Fusion occurs in the Sun's core, releasing energy that is transferred outward. Once in the radiative zone, gamma rays are transferred by radiation. They are converted to other types of photons, which move into the convective zone, where they are transferred by convection. Finally, energy is emitted from the photosphere.
Answer:
If earth had no tilt, we would have no seasons.
Explanation:
As stated in the answer, if the earth had no tilt we wouldn't have seasons. The earth all around the globe would maintain the same temperature,
And due to the no tilt it would also change our orbit to a bit larger slant, in January when we are at our closest to the sun we WOULD have a mini summer. For the North and South Pole, they would remain cold.
Answer:
500 kg
Explanation:
It is given that,
The mass of a open train car, M = 5000 kg
Speed of open train car, V = 22 m/s
A few minutes later, the car’s speed is 20 m/s
We need to find the mass of water collected in the car. It is based on the conservation of momentum as follows :
initial momentum = final momentum
Let m is final mass
MV=mv

Water collected = After mass of train - before mass of train
= 5500 - 5000
= 500 kg
So, 500 kg of water has collected in the car.
Answer:
the speed of the tip of a blade 10 s after the fan is turned off is 16.889 m/s.
Explanation:
Given;
diameter of the ceiling fan, d = 90 cm = 0.9 m
angular speed of the fan, ω = 64 rpm
time taken for the fan to stop, t = 28 s
The distance traveled by the ceiling fan when it comes to a stop is calculated as;

The speed of the tip of a blade 10 s after the fan is turned off is calculated as;

Therefore, the speed of the tip of a blade 10 s after the fan is turned off is 16.889 m/s.