Given data:
* The mass of the ball is 2 kg.
* The gravitational field strength at the surface of planet X is 5 N/kg.
Solution:
The weight of the ball on the planet X is,

where m is the mass of ball, a is the gravitational field strength,
Substituting the known values,

Thus, the weight of the ball on the surface of planet X is 10 N.
Answer:
b. Jupiter’s greater gravity has compressed the layers, so they are closer together there.
Explanation:
The value for Jupiter mass is 1.8981×10²⁷kg, while the mass of Saturn is 5.6832×10²⁶kg, so the different layers of clouds in Jupiter will be submitted to a greater gravitational pull because it has a bigger mass, as is established in the law of universal gravitation:
(1)
Where m1 and m2 are the masses of two objects, G is the gravitational constant and r is the distance between the two objects.
As it can be seen in equation 1, the gravitational force is directly proportional to the product of the masses of the objects, so if the mass increase the gravitational force will do it too.
For the case of Saturn, it has a lower mass so its layers of clouds will suffer a weaker gravitational pull. That leads to the three clouds being more spacing that the ones of Jupiter.
Answer:
See the answers below.
Explanation:
to solve this problem we must make a free body diagram, with the forces acting on the metal rod.
i)
The center of gravity of the rod is concentrated in half the distance, that is, from the end of the bar to the center there is 40 [cm]. This can be seen in the attached free body diagram.
We have only two equilibrium equations, a summation of forces on the Y-axis equal to zero, and a summation of moments on any point equal to zero.
For the summation of forces we will take the forces upwards as positive and the negative forces downwards.
ΣF = 0

Now we perform a sum of moments equal to zero around the point of attachment of the string with the metal bar. Let's take as a positive the moment of the force that rotates the metal bar counterclockwise.
ii) In the free body diagram we can see that the force acts at 18 [cm] of the string.
ΣM = 0
![(15*9) - (18*W) = 0\\135 = 18*W\\W = 7.5 [N]](https://tex.z-dn.net/?f=%2815%2A9%29%20-%20%2818%2AW%29%20%3D%200%5C%5C135%20%3D%2018%2AW%5C%5CW%20%3D%207.5%20%5BN%5D)
Answer:
A
B

C

D

Explanation:
Considering the first question
From the question we are told that
The spring constant is 
The potential energy is 
Generally the potential energy stored in spring is mathematically represented as 
=>
=>
=>
Considering the second question
From the question we are told that
The mass of the dart is m = 0.050 kg
Generally from the law of energy conservation

=> 
=> 
Considering the third question
The height at which the dart was fired horizontally is 
Generally from the law of energy conservation

Here KE is kinetic energy of the dart which is mathematical represented as

=> 
=> 
=> 
Considering the fourth question
Generally the total time of flight of the dart is mathematically represented as

=> 
=> 
Generally the horizontal distance from the equilibrium position to the ground is mathematically represented as

=> 
=> 
Answer:
Gases that are very good at absorbing long wave photons of infrared light
Explanation:
- Green house gases examples are Carbon monoxide, nitric oxide etc.
- These gases absorb long wave photons of infrared light of sun's rays
- They melts the glaciers and increase the sea level .