Answer:
I believe if red, blue, and green light come together it would produce White light.
Kinetic energy has nothing to do with anything other than motion of the particle.
When a particle with velocity v collides another particle(suppose it is at rest for simplication), assuming that there is perfectly elastic collision between them, the velocity of particle which was at rest becomes mv/M ( assuming mass of particle in motion to be m and at rest to be M) from convervation of linear momentum. And all this transfer of energy happens in a fraction of seconds which is not visible to naked eyes.
Hence 1st option is correct!
By definition, the momentum is given by:
p = m * v
Where,
m = mass
v = speed.
On the other hand,
F = m * a
Where,
m = mass
a = acceleration:
For the boy we have:
p1 = m * v
p1 = (F / a) * v
p1 = ((710) / (9.81)) * (0.50)
p1 = 36.19 Kg * (m / s)
For the girl we have:
p2 = m * v
p2 = (F / a) * v
p2 = ((480) / (9.81)) * (v)
p2 = 48.93 * v Kg * (m / s)
Then, we have:
p1 + p2 = 0
36.19 + 48.93 * v = 0
Clearing v:
v = - (36.19) / (48.93)
v = -0.74 m / s (negative because the velocity is in the opposite direction of the boy's)
Answer:
the girl's velocity in m / s after they push off is -0.74 m / s
Answer:
1992 (Early 1990s)
Explanation:
First of all, i would like to define an extrasolar planet as a planet that orbits a start that is not our own.
The first confirmed detections of extrasolar planets occured in the early 1990s (specifically 1992, some say 1995). The name of the first extrasolar planet is widely believed to be called Dimidium or 51 Pegasi b.
Extrasolar were searched by monitoring stars for slight dimming that might occur as unseen planets pass in front of them.
Gravitational potential energy = mass × gravity × height
Ep = (4)(9.81)(3)
Energy = 117.72 Joules
= 1.2x10^2 Joules