The value of parameter C for the function in the figure is 2.
<h3>What is amplitude of a wave?</h3>
The amplitude of a wave is the maximum displacement of the wave. It can also be described at the maximum upward displacement of a wave curve.
f(x) = Acos(x - C)
where;
- A is amplitude of the wave
- C is phase difference of the wave
<h3>What is angular frequency of a wave?</h3>
Angular frequency is the angular displacement of any element of the wave per unit time.
From the blue colored graph; at y = 1, x = -2 cm
1 = cos(2 - C)
(2 - C) = cos^(1)
(2 - C) = 0
C = 2
Thus, the value of parameter C for the function in the figure is 2.
Learn more about phase angle here: brainly.com/question/16222725
#SPJ1
There would be very less percentage loss<span> of the kinetic energy during </span>the conversion<span> to internal energy, assuming that there is less air in the </span>surroundings<span>. Also, the friction will contribute to the conversion where if it is, the percentage loses is negligible.</span>
lf a heavy point mass is suspended by a weightless, inextensible and perfectly flexible string from a rigid support, then this arrangement is called simple pendulum.
In practice, however, these requirements cannot be fulfilled. So we use a practical pendulum.
A practical pendulum consists of a small metallic solid sphere suspended by a fine silk thread from a rigid support. This is the practical simple pendulum which is nearest to the ideal simple pendulum.
Note :
The metallic sphere is called the bob.
When the bob is displaced slightly to one side from its mean position and released, it oscillates about its mean position in a vertical plane.
Answer: Answer to the I'm Tall when I'm Young, and I'm Short when I'm Old. What am I? Riddle is a candle
Hope this helps
Let's call the constant acceleration a.
At a time t, its speed will thus be v(t)=a*t+v0 where v0 is its initial speed, here 10 m/s. Hence v(t)=a*t+10.
From there we can deduce the position P(t)=a*t^2/2+10t+p0 where p0 is the initial position, here 0.
Hence P(t)=a*t^2/2+10t
Let's call T the time at which it's at 50 m/s, we know that P(T)=225m and that v(T)=50 m/s hence a*T+10=50 thus a=40/T and P(T)=(40/2+10)T=30T
Hence T=225/30=7.5
It took 7.5 seconds