Answer:
1. Distance travelled = 12 km.
2. Displacement = 8.6 km
Explanation:
From the question given above, the following data were obtained:
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance =?
Displacement =?
1. Determination of the distance travelled.
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance (dₜ) =?
dₜ = d₁ + d₂
dₜ = 7 + 5
dₜ = 12 km
2. Determination of the displacement.
In the attached photo, R is the displacement.
We can obtain the value of R by using the pythagoras theory as illustrated below:
R² = 7² + 5²
R² = 49 + 25
R² = 74
Take the square root of both side
R = √74
R = 8.6 km
If you have a runny nose then the mucus will block the path that smell goes through. So if you are trying to smell a flower then you will have a hard time because the mucus is in the way, or blocking the entrance path. Hope this helps:)
May I please have brainliest?
The emerging velocity of the bullet is <u>71 m/s.</u>
The bullet of mass <em>m</em> moving with a velocity <em>u</em> has kinetic energy. When it pierces the block of wood, the block exerts a force of friction on the bullet. As the bullet passes through the block, work is done against the resistive forces exerted on the bullet by the block. This results in the reduction of the bullet's kinetic energy. The bullet has a speed <em>v</em> when it emerges from the block.
If the block exerts a resistive force <em>F</em> on the bullet and the thickness of the block is <em>x</em> then, the work done by the resistive force is given by,
This is equal to the change in the bullet's kinetic energy.
If the thickness of the block is reduced by one-half, the bullet emerges out with a velocity v<em>₁.</em>
Assuming the same resistive forces to act on the bullet,
Divide equation (2) by equation (1) and simplify for v<em>₁.</em>
Thus the speed of the bullet is 71 m/s
Heptane is always composed of 84.0% carbon and 16.0% hydrogen. This illustrates the "law of definite proportions".
Answer: Option C
<u>Explanation:</u>
Proust's law states that every chemical compound used to made up of element constituents with constant proportions in terms of its mass and also independent from its sources and synthesis method. In 1779, Joseph Proust gave other names to the Proust's law as, the law of composition or definite proportions or constant compositions.
This can understood from given example like: Oxygen is composed of 8/9 of the mass of any sample of pure water while the hydrogen fills up the remaining 1/9 of the mass. The basis of stoichiometry is structured with the law of multiple proportions along the law of definite proportions.