The velocity of the pitcher at the given mass is 0.1 m/s.
The given parameters:
- <em>Mass of the pitcher, m₁ = 50 kg</em>
- <em>Mass of the baseball, m₂ = 0.15 kg</em>
- <em>Velocity of the ball, u₂ = 35 m/s</em>
<em />
Let the velocity of the pitcher = u₁
Apply the principle of conservation of linear momentum to determine the velocity of the pitcher as shown below;
m₁u₁ = m₂u₂
![u_1 = \frac{m_2 u_2}{m_1} \\\\u_1 = \frac{0.15 \times 35}{50} \\\\u_1 = 0.105 \ m/s\\\\u_1 \approx 0.1 \ m/s](https://tex.z-dn.net/?f=u_1%20%3D%20%5Cfrac%7Bm_2%20u_2%7D%7Bm_1%7D%20%5C%5C%5C%5Cu_1%20%3D%20%5Cfrac%7B0.15%20%5Ctimes%2035%7D%7B50%7D%20%5C%5C%5C%5Cu_1%20%3D%200.105%20%5C%20m%2Fs%5C%5C%5C%5Cu_1%20%5Capprox%200.1%20%5C%20m%2Fs)
Thus, the velocity of the pitcher at the given mass is 0.1 m/s.
Learn more about conservation of linear momentum here: brainly.com/question/13589460
Answer:
![E_y=1175510.2\ N.C^{-1}](https://tex.z-dn.net/?f=E_y%3D1175510.2%5C%20N.C%5E%7B-1%7D)
The Magnitude of electric field is in the upward direction as shown directly towards the charge
.
Explanation:
Given:
- side of a square,
![a=52.5\ cm](https://tex.z-dn.net/?f=a%3D52.5%5C%20cm)
- charge on one corner of the square,
![q_1=+45\times 10^{-6}\ C](https://tex.z-dn.net/?f=q_1%3D%2B45%5Ctimes%2010%5E%7B-6%7D%5C%20C)
- charge on the remaining 3 corners of the square,
![q_2=q_3=q_4=-27\times 10^{-6}\ C](https://tex.z-dn.net/?f=q_2%3Dq_3%3Dq_4%3D-27%5Ctimes%2010%5E%7B-6%7D%5C%20C)
<u>Distance of the center from each corners</u>![=\frac{1}{2} \times diagonals](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20diagonals)
![diagonal=\sqrt{52.5^2+52.5^2}](https://tex.z-dn.net/?f=diagonal%3D%5Csqrt%7B52.5%5E2%2B52.5%5E2%7D)
![diagonal=74.25\cm=0.7425\ m](https://tex.z-dn.net/?f=diagonal%3D74.25%5Ccm%3D0.7425%5C%20m)
∴Distance of center from corners, ![b=0.3712\ m](https://tex.z-dn.net/?f=b%3D0.3712%5C%20m)
Now, electric field due to charges is given as:
![E=\frac{1}{4\pi\epsilon_0}\times \frac{q}{b^2}](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Ctimes%20%5Cfrac%7Bq%7D%7Bb%5E2%7D)
<u>For charge
we have the field lines emerging out of the charge since it is positively charged:</u>
![E_1=9\times 10^9\times \frac{45\times 10^{-6}}{0.3712^2}](https://tex.z-dn.net/?f=E_1%3D9%5Ctimes%2010%5E9%5Ctimes%20%5Cfrac%7B45%5Ctimes%2010%5E%7B-6%7D%7D%7B0.3712%5E2%7D)
<u>Force by each of the charges at the remaining corners:</u>
![E_2=E_3=E_4=9\times 10^9\times \frac{27\times 10^{-6}}{0.3712^2}](https://tex.z-dn.net/?f=E_2%3DE_3%3DE_4%3D9%5Ctimes%2010%5E9%5Ctimes%20%5Cfrac%7B27%5Ctimes%2010%5E%7B-6%7D%7D%7B0.3712%5E2%7D)
<u> Now, net electric field in the vertical direction:</u>
![E_y=E_1-E_4](https://tex.z-dn.net/?f=E_y%3DE_1-E_4)
![E_y=1175510.2\ N.C^{-1}](https://tex.z-dn.net/?f=E_y%3D1175510.2%5C%20N.C%5E%7B-1%7D)
<u>Now, net electric field in the horizontal direction:</u>
![E_y=E_2-E_3](https://tex.z-dn.net/?f=E_y%3DE_2-E_3)
![E_y=0\ N.C^{-1}](https://tex.z-dn.net/?f=E_y%3D0%5C%20N.C%5E%7B-1%7D)
So the Magnitude of electric field is in the upward direction as shown directly towards the charge
.
Answer:
Tangential speed=5.4 m/s
Radial acceleration=![88.6m/s^2](https://tex.z-dn.net/?f=88.6m%2Fs%5E2)
Explanation:
We are given that
Angular speed=2.59 rev/s
We know that
1 revolution=![2\pi rad](https://tex.z-dn.net/?f=2%5Cpi%20rad)
2.59 rev=![2\pi\times 2.59=5.18\pi=5.18\times 3.14=16.27 rad/s](https://tex.z-dn.net/?f=2%5Cpi%5Ctimes%202.59%3D5.18%5Cpi%3D5.18%5Ctimes%203.14%3D16.27%20rad%2Fs)
By using ![\pi=3.14](https://tex.z-dn.net/?f=%5Cpi%3D3.14)
Angular velocity=![\omega=16.27rad/s](https://tex.z-dn.net/?f=%5Comega%3D16.27rad%2Fs)
Distance from axis=r=0.329 m
Tangential speed=![r\omega=16.27\times 0.329=5.4m/s](https://tex.z-dn.net/?f=r%5Comega%3D16.27%5Ctimes%200.329%3D5.4m%2Fs)
Radial acceleration=![\frac{v^2}{r}](https://tex.z-dn.net/?f=%5Cfrac%7Bv%5E2%7D%7Br%7D)
Radial acceleration=![\frac{(5.4)^2}{0.329}=88.6m/s^2](https://tex.z-dn.net/?f=%5Cfrac%7B%285.4%29%5E2%7D%7B0.329%7D%3D88.6m%2Fs%5E2)
Answer:
yeah
Explanation:
as wavelength increases frequency decreases and it goes the same for the opposite way
Only if a force acts upon it, it can move.