Answer:
1.10134 * 10⁻⁹m⁻¹
Explanation:
K = 680Nm⁻¹
μ = ?
μ = (m₁ + m₂) / m₁m₂
compound = CO
C = 12.0 g/mol = 0.012kg/mol
O = 16.0g/mol = 0.016kg/mol
μ = (m₁ + m₂) / m₁m₂
μ = (0.012 + 0.016) / (0.012*0.016) = 145.83
v = 1/2πc * √(k/μ)
ν = 1/ 2*3.142* 3.0*10⁸ * √(630/145.83)
v = 5.30*10⁻¹⁰ * 2.078
v = 1.10134*10⁻⁹m⁻¹
i assume it will be 5mins i hope thi shelp u out
Answer:
Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Explanation:
The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.
When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.
The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.
The velocity of the orbit is given by the relation,

Where
V - velocity of the orbit at a height h from the surface
R - Radius of the second object
G - Gravitational constant
h - height from the surface
The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
<span>A substance that accelerates the rate of chemical reaction is called a catalyst. It serves as an alternative pathway for the reaction product. The increase of rate of chemical reaction is because catalyst has low activiation energy than the original pathway. The low activation energy will increase the amount of molecules that can benefit in the energy created by the catalyst.</span>