Answer:
172.9m
Explanation:
h = 1/2 gt^
First calculat for t using
v = gt
t = v/g = 58.8/10
= 5.88secs
now h = 1/2 x 10 x 5.88^2
h =1/2 x 10 x 34.57
= 345.74/2
= 172.9m
Answer: The longer the lever, the greater the force on the load will be.
Explanation:
Answer:
The sphere is positively charged
Explanation:
This is because when the positively charged rod is brought near the metal rod A, the electrons in metal rod A and sphere B are attracted towards it into metal rod A while the positive charges in the are repelled into sphere B. So, when the charged rod is withdrawn, and metal rod A and sphere B are separated, metal rod A is now negatively charged, but sphere B is positively charged.
So, sphere B is positively charged.
Answer:
u= 20.09 m/s
Explanation:
Given that
m = 0.02 kg
M= 2 kg
h= 0.2 m
Lets take initial speed of bullet = u m/s
The final speed of the system will be zero.
From energy conservation
1/2 m u²+ 0 = 0+ (m+M) g h
m u²=2 (m+M) g h
By putting the values
0.02 x u² = 2 (0.02+2) x 10 x 0.2 ( take g=10 m/s²)
u= 20.09 m/s
Answer:
96 Joules
Explanation:
The formula for work is Fnet times displacement (F x d = w) which, in this case, 48N is the Fnet and 2m as the displacement. Then all we need to do is multiply these two and we get 96 Joules.