Answer:
Vi = 0.055 m³ = 55 L
Explanation:
From first Law of Thermodynamics, we know that:
ΔQ = ΔU + W
where,
ΔQ = Heat absorbed by the system = 52.5 J
ΔU = Change in Internal Energy = -102.5 J (negative sign shows decrease in internal energy of the system)
W = Work Done in Expansion by the system = ?
Therefore,
52.5 J = - 102.5 J + W
W = 52.5 J + 102.5 J
W = 155 J
Now, the work done in a constant pressure condition is given by:
W = PΔV
W = P(Vf - Vi)
where,
P = Constant Pressure = (0.5 atm)(101325 Pa/1 atm) = 50662.5 Pa
Vf = Final Volume of System = (58 L)(0.001 m³/1 L) = 0.058 m³
Vi = Initial Volume of System = ?
Therefore,
155 J = (50662.5 Pa)(0.058 m³ - Vi)
Vi = 0.058 m³ - 155 J/50662.5 Pa
Vi = 0.058 m³ - 0.003 m³
<u>Vi = 0.055 m³ = 55 L</u>
Answer:
An atom is the smallest constituent unit of ordinary matter that constitutes a chemical element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are extremely small; typical sizes are around 100 picometers.Explanation:
A) The temperature will increase.
Kinetic energy is the intrinsic energy carried by an object in motion.
Explanation:
Increasing the kinetic energy of the molecules means that molecules rapidly. This causes an increased rate of collision between the molecules and between the molecules and the walls of the container. Most of these collisions are inelastic meaning that some of the energy in the collisions is lost as heat energy to the environment. This means the system becomes hotter.
Learn More:
To understand more on the relations between kinetic energy and temperatures check out;
brainly.com/question/11800512
brainly.com/question/11296583
#LearnWithBrainly