Answer:
There are two components for a two-dimensional coordinate system/vector.
Explanation:
For two-dimensional vectors, such as velocity, acceleraton, etc, there are two components, the x- and y-components.
These components could be rotated or translated, depending on the coordinate system.
Instead of rectangular cartesian system, the components could also be in the form of polar coordinates, such as radius and theta (angle).
For three-dimensional vectors, such as velocity in space, there are three components, in various coordinate systems.
Answer:
3
Explanation:
The half-life of a radioactive isotope is the time it takes for the mass of the sample to halve.
This can be rewritten as follows:
where
m(t) is the mass of the sample at time t
m0 is the original mass of the sample
n is the number of half-lives that passed
We see that if we take n=3, the amount of original sample left is
So 3 (3 half-lives) is the correct answer.
Answer:
Explanation:
Given
mass of rock
Elevation of Rock
Distance traveled by rock with time
where, u=initial velocity
t=time
a=acceleration
here initial velocity is zero
when rock is 5 m from ground then it has traveled a distance of 5 m from top because total height is 10 m
velocity at this time
Answer: beta particles
Explanation:
Given mass = 14.0 g
Molar mass = 137 g/mol
According to avogadro's law, 1 mole of every substance weighs equal to its molecular mass and contains avogadro's number of particles.
1 mole of cesium contains atoms =
0.102 moles of cesium contains atoms =
The relation of atoms with time for radioactivbe decay is:
Where =atoms left undecayed
= initial atoms
t = time taken for decay = 3 minutes
= half life = 30.0 years = minutes
The fraction that decays :
Amount of particles that decay is =
Thus beta particles are emitted by a 14.0-g sample of cesium-137 in three minutes.