We assume that horn releases sound of constant frequency. In order for observer to observe different frequency either horn or observer or both must move.
This happens due to Doppler effect. It states that when position of source of sound and observer relative to each other changes, the observed frequency also changes. If the source emits sound of constant frequency than observed frequency will be either higher or lower than original.
When distance between source and observer increases the observed frequency will be lower. This is because same number of sound waves must cover greater distance so they have greater wavelength.
When distance between source and observer decreases the observed frequency will be higher. This is because same number of sound waves must cover smaller distance so they have smaller wavelength.
Wavelength and frequency are inversely proportional meaning when one increases the other drecreases.
From this explanation we can find answer for our question. <span>If we wanted the pitch of a horn to drop relative to an observer we need to move horn away from an observer.</span>
-- reduce the length of a wire to 1/2 . . . cut the resistance in half
-- reduce the diameter to 1/4 . . . reduce the cross-section area by (1/4²) . . . increase the resistance by 16x .
-- R2 = (R1) · (1/2) · (16) = 8 · R1
<em>-- R2 / R1 = 8</em>
Answer:
50.4°
Explanation:
Snell's law states:
n₁ sin θ₁ = n₂ sin θ₂
where n is the index of refraction and θ is the angle of incidence (relative to the normal).
When θ₁ = 48°:
n sin 48° = 1.33 sin 72°
n = 1.702
When θ₁ = 37°:
1.702 sin 37° = 1.33 sin θ
θ = 50.4°
Answer: 
Explanation:
The acceleration of the motorcycle is given by Newton's second law:

where
F = 1295 N is the force applied to the motorcycle
m = 350 kg is the mass of the motorbike
a is the acceleration
By substituting the numbers into the formula, we find
