Answer:
because thermometric liquid readily expands on heating or contracts on cooling even for a small difference in the temperature of the body.
Answer:
B. When the racket hits the tennis ball with a force, the tennis ball applies an equal but opposite force to the racket.
Explanation:
According to the Newton's third law of motion every action has equal and opposite reaction. So, when the force is applied by the racket on the ball then the ball also applies an equal intensity of force in the opposite direction on the racket. It is just that the the force on the racket is absorbed by the player holding it.
Answer: 9.9 seconds
Explanation:
that's just how long it takes
Answer:
i). Inverted
ii). Magnification of the image = -0.5
iii). Real
Explanation:
As shown in the ray diagram attached,
An object AB has been placed in front of converging lens (convex lens) at u = 30 cm.
F (Focus) of the lens is at 10 cm. So F = 10 cm
By analyzing the ray diagram we can measure the distance of the image on the other side of the lens (By counting the small blocks of the graph)
V = 15 cm
Characteristics of the image is:
i) Inverted
ii) Magnification of the image = 
= -0.5
ii) Real
The cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².
Answer:
Explanation:
Acceleration exerted by an object is the measure of change in speed or velocity of that object with respect to time. So the initial and final velocities play a major role in determining the acceleration of the cyclist. As here the initial velocity of the cyclist is the speed at rest and that is given as 0 m/s. Then after 3 seconds, the velocity of the cyclist changes to 9 m/s.
Then acceleration = change in velocity/Time.

Acceleration = (9-0)/3=9/3=3 m/s².
So the cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².