1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
8

As the Moon orbits Earth, its direction constantly changes. Which of these forces is most likely causing this change in velocity

? Select one:
a. applied force
b. friction force
c. gravity
d. tension force
Physics
1 answer:
zysi [14]3 years ago
8 0
Gravity is the most likely force causing this phenomenon. please leave a thanks
You might be interested in
During a testing process, a worker in a factory mounts a bicycle wheel on a stationary stand and applies a tangential resistive
Katyanochek1 [597]

Answer:

The force is F = 1041.7N

Explanation:

The moment of Inertia I is mathematically evaluated as

               I = MR_A^2

Substituting  1.9kg for M(Mass of the wheel) and \frac{66cm}{2} * \frac{1m}{100cm} = 0.33m for R_A(Radius of wheel)

              I = 1.9 * 0.33^2

                = 0.207kgm^2

The torque on the wheel due to net force is mathematically represented as

                      \tau = FR_B  - F_rR_A

Substituting  135 N for F_r (Force acting on sprocket),\frac{8.7cm}{2} * \frac{1m}{100cm} = 0.0435m for R_B (radius of the chain) and F is the force acting on the sprocket due to the chain which is unknown for now

                     \tau = F (0.0435) - 135 (0.33)

This same torque due to the net force is the also the torque that is required to rotate the wheel to have an angular acceleration of \alpha  = 3.70 rad/s^2 and this torque can also be represented mathematically as

                   \tau = \alpha I

Now equating the two equation for torque

                                F (0.0435) - 135 (0.33) = \alpha I    

Making F the subject

                     F = \frac{\alpha I + (135*0.33) }{0.0435}

Substituting values

                  F = \frac{(3.70 * 0.207)  + (135*0.33)}{0.0435}

                       = 1041.7N

4 0
3 years ago
A string along which waves can travel is 4.36 m long and has a mass of 222 g. The tension in the string is 60.0 N. What must be
lora16 [44]

Answer:

frequency is 195.467 Hz

Explanation:

given data

length L = 4.36 m

mass m = 222 g = 0.222 kg

tension T = 60 N

amplitude A = 6.43 mm = 6.43 × 10^{-3} m

power P = 54 W

to find out

frequency f

solution

first we find here density of string that is

density ( μ )= m/L ................1

μ = 0.222 / 4.36  

density μ is 0.050 kg/m

and speed of travelling wave

speed v = √(T/μ)       ...............2

speed v = √(60/0.050)

speed v = 34.64 m/s

and we find wavelength by power that is

power = μ×A²×ω²×v  /  2     ....................3

here ω is wavelength put value

54 = ( 0.050 ×(6.43 × 10^{-3})²×ω²× 34.64 )   /  2

0.050 ×(6.43 × 10^{-3})²×ω²× 34.64 = 108

ω² = 108 / 7.160  × 10^{-5}

ω = 1228.16 rad/s

so frequency will be

frequency = ω / 2π

frequency = 1228.16 / 2π

frequency is 195.467 Hz

7 0
3 years ago
Two long, parallel wires are attracted to each other by a force per unit length of 350 µN/m. One wire carries a current of 22.5
pishuonlain [190]

Answer

given,

force per unit length = 350 µN/m

current, I = 22.5 A

y = y = 0.420 m

\dfrac{F}{L}= \dfrac{KI_1I_2}{d}

I_2 = \dfrac{F}{L}\dfrac{d}{KI_1}

I_2 = 350\times 10^{-6}\times \dfrac{0.42}{2 \times 10^{-7}\times 22.5}

    I₂ = 32.67 A

distance where the magnetic field is zero

\dfrac{4\pi \times 10^{-7}\times 32.67}{2\pi y_1}=\dfrac{4\pi \times 10^{-7}\times 22.5}{2\pi (0.42-y_1)}

y_1 = 0.248\ m

there the distance at which the magnetic field is zero in the two wire is at 0.248 m.

3 0
3 years ago
A conservative force does the same work regardless of the path taken.
ella [17]

A conservative force is a force that when work is done against this force the work done does not depend on the path taken only the initial and final position.

5 0
3 years ago
Read 2 more answers
The law of conservation of matter states that matter can neither be created nor destroyed. How is the law of conservation of mat
FromTheMoon [43]
<span>The law of conservation of matter and energy relates to the cycles in nature, and by that it is also applied to rocks and other materials.  All of the rock in the Earth is recycled and accounted for during the rock cycle. Rocks experience physical change, the composition of the material stays the same, it may just change how it looks and chemical changes occur (the suubstance undergoes a chemical reaction that changes the actual makeup of the substance).</span>
4 0
3 years ago
Other questions:
  • The vertical velocity?
    11·1 answer
  • A horizontal pull A pulls two wagons over a horizontal frictionless floor, the first wagon is 500N, the second is 2000 N. The te
    12·1 answer
  • Conversion of the sun’s energy from fossil fuels into electricity does not involve:
    11·1 answer
  • To collect quantitative data, scientists use all of the following except _____.
    10·2 answers
  • A +26.3 uC charge qy is repelled by a force
    5·1 answer
  • それで、私はヘビと一緒に座っていました、そしてこれが起こりました、私のヘビは本当に奇妙に行動していたので私は本当に混乱したようでした、私のヘビは本当に奇妙に行動していたので、私はオーロラのようでした、やめてください。それから彼女は私をすべて奇妙に見たので私
    10·1 answer
  • What is a star? What is our biggest and closest star?<br> (Btw i wasn't sure if this was Physics.)
    9·2 answers
  • An object is spun around in circular motion such that its frequency is 500 Hz.
    11·1 answer
  • On which factor does the colour of the scattered white light dependant.​
    14·1 answer
  • Why is tungsten used as a filament in a bulb?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!