1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nat2105 [25]
3 years ago
15

A 62-kg person jumps from a window to a fire net 20.0 m directly below, which stretches the net 1.4 m. Assume that the net behav

es like a simple spring. (a) Calculate how much it would stretch if the same person were lying in it. (b) How much would it stretch if the person jumped from 38 m?
Physics
1 answer:
gayaneshka [121]3 years ago
5 0

Answer:

a) x = 0.098

b) x = 2.72 m

Explanation:

(a) To find the stretch of the fire net when the same person is lying in it, you can assume that the net is like a spring with constant spring k. It is necessary to find k.

When the person is falling down he acquires a kinetic energy K, this energy is equal to the elastic potential energy of the net when it is max stretched.

Then, you have:

K=U\\\\\frac{1}{2}mv^2=\frac{1}{2}kx^2        (1)

m: mass of the person = 62kg

k: spring constant = ?

v: velocity of the person just when he touches the fire net = ?

x: elongation of the fire net = 1.4 m

Before the calculation of the spring constant, you calculate the final velocity of the person by using the following formula:

v^2=v_o^2+2gy

vo: initial velocity = 0 m/s

g: gravitational acceleration = 9.8 m/s^2

y: height from the person jumps = 20.0m

v=\sqrt{2gy}=\sqrt{2(9.8m/s^2)(20.0m)}=14\frac{m}{s}

With this value you can find the spring constant k from the equation (1):

mv^2=kx^2\\\\k=\frac{mv^2}{x^2}=\frac{(62kg)(14m/s)^2}{(1.4m)^2}=6200\frac{N}{m}

When the person is lying on the fire net the weight of the person is equal to the elastic force of the fire net:

W=F_e\\\\mg=kx

you solve the last expression for x:

x=\frac{mg}{k}=\frac{(62kg)(9.8m/s^2)}{6200N/m}=0.098m

When the person is lying on the fire net the elongation of the fire net is 0.098m

b) To find how much would the net stretch, If the person jumps from 38 m, you first calculate the final velocity of the person again:

v=\sqrt{2gy}=\sqrt{2(9.8m/s^2)(38m)}=27.29\frac{m}{s}

Next, you calculate x from the equation (1):

x=\sqrt{\frac{mv^2}{k}}=\sqrt{\frac{(62kg)(27.29m/s)^2}{6200N/m}}\\\\x=2.72m

The net fire is stretched 2.72 m

You might be interested in
The position of a particle moving along the x-axis varies with time according to x(t) = 5.0t^2 − 4.0t^3 m. Find (a) the velocity
KengaRu [80]
<h2>Answer:</h2>

(a) v(t) = [10.0t - 12.0t²] m/s  and a(t) = [10.0 - 24.0t ] m/s² respectively

(b) -28.0m/s and -38.0m/s² respectively

(c) 0.83s

(d) 0.83s

(e) x(t)  = 1.1573 m           [where t = 0.83s]

<h2>Explanation:</h2>

The position equation is given by;

x(t) = 5.0t² - 4.0t³ m           --------------------(i)

(a) Since velocity is the time rate of change of position, the velocity, v(t), of the particle as a function of time is calculated by finding the derivative of equation (i) as follows;

v(t) = dx(t) / dt = \frac{dx}{dt} = \frac{d}{dt} [ 5.0t² - 4.0t³ ]

v(t) = 10.0t - 12.0t²     --------------------------------(ii)

Therefore, the velocity as a function of time is v(t) = 10.0t - 12.0t² m/s

Also, since acceleration is the time rate of change of velocity, the acceleration, a(t), of the particle as a function of time is calculated by finding the derivative of equation (ii) as follows;

a(t) = dx(t) / dt = \frac{dv}{dt} =  \frac{d}{dt} [ 10.0t - 12.0t² ]

a(t) = 10.0 - 24.0t             --------------------------------(iii)

Therefore, the acceleration as a function of time is a(t) = 10.0 - 24.0t m/s²

(b) To calculate the velocity at time t = 2.0s, substitute the value of t = 2.0 into equation (ii) as follows;

=> v(t) =  10.0t - 12.0t²

=> v(2.0) = 10.0(2) - 12.0(2)²

=> v(2.0) = 20.0 - 48.0

=> v(2.0) = -28.0m/s

Also, to calculate the acceleration at time t = 2.0s, substitute the value of t = 2.0 into equation (iii) as follows;

=> a(t) = 10.0 - 24.0t

=> a(2.0) = 10.0 - 24.0(2)

=> a(2.0) = 10.0 - 48.0

=> a(2.0) = -38.0 m/s²

Therefore, the velocity and acceleration at t = 2.0s are respectively -28.0m/s and -38.0m/s²

(c) The time at which the position is maximum is the time at which there is no change in position or the change in position is zero. i.e dx / dt = 0. It also means the time at which the velocity is zero. (since velocity is dx / dt)

Therefore, substitute v = 0 into equation (ii) and solve for t as follows;

=> v(t) = 10.0t - 12.0t²

=> 0 = 10.0t - 12.0t²

=> 0 = ( 10.0 - 12.0t ) t

=> t = 0            or             10.0 - 12.0t = 0

=> t = 0            or             10.0 = 12.0t

=> t = 0            or             t = 10.0 / 12.0

=> t = 0            or             t = 0.83s

At t=0 or t = 0.83s, the position of the particle will be maximum.

To get the more correct answer, substitute t = 0 and t = 0.83 into equation (i) as follows;

<em>Substitute t = 0 into equation (i)</em>

x(t) = 5.0(0)² - 4.0(0)³ = 0

At t = 0; x = 0

<em>Substitute t = 0.83s into equation (i)</em>

x(t) = 5.0(0.83)² - 4.0(0.83)³

x(t) = 5.0(0.6889) - 4.0(0.5718)

x(t) = 3.4445 - 2.2872

x(t)  = 1.1573 m

At t = 0.83; x = 1.1573 m

Therefore, since the value of x at t = 0.83s is 1.1573m is greater than the value of x at t = 0 which is 0m, then the time at which the position is at maximum is 0.83s

(d) The velocity will be zero when the position is maximum. That means that, it will take the same time calculated in (c) above for the velocity to be zero. i.e t = 0.83s

(e) The maximum position function is found when t = 0.83s as shown in (c) above;

Substitute t = 0.83s into equation (i)

x(t) = 5.0(0.83)² - 4.0(0.83)³

x(t) = 5.0(0.6889) - 4.0(0.5718)

x(t) = 3.4445 - 2.2872

x(t)  = 1.1573 m            [where t = 0.83s]

8 0
3 years ago
What hanging mass will stretch a 3.0-m-long, 0.32 mm - diameter steel wire by 1.3 mm ? The Young's modulus of steel is 20×10^10
raketka [301]

Answer:

0.71 kg

Explanation:

L = length of the steel wire = 3.0 m

d = diameter of steel wire = 0.32 mm = 0.32 x 10⁻³ m

Area of cross-section of the steel wire is given as

A = (0.25) πd²

A = (0.25) (3.14) (0.32 x 10⁻³)²

A = 8.04 x 10⁻⁸ m²

ΔL = change in length of the wire = 1.3 mm = 1.3 x 10⁻³ m

Y = Young's modulus of steel = 20 x 10¹⁰ Nm⁻²

m = mass hanging

F = weight of the mass hanging

Young's modulus of steel is given as

Y = \frac{FL}{A\Delta L}

20\times 10^{10} = \frac{F(3)}{(8.04\times 10^{-8})(1.3\times 10^{-3})}

F = 6.968 N

Weight of the hanging mass is given as

F = mg

6.968 = m (9.8)

m = 0.71 kg

7 0
4 years ago
Two rooms are in contact. One is at 15°C and the other at 21°C. Choose the best statement concerning the heat flow.
amid [387]
A is the answer to your question
7 0
3 years ago
Read 2 more answers
A student pushes a 50-N box across the floor a distance of 15 m. How much work was done to move the box?
irinina [24]

Answer:750

Explanation:

50 times 15

4 0
3 years ago
Read 2 more answers
Which term means to bend the foot upward at the ankle?
lisabon 2012 [21]
The term <span>dorsiflexion means to bend the foot upwards at the ankle.

</span><span>Dorsiflexion means to flex the joint of the ankle in such way that the underside of the foot is rotated upwards where the upper surface of one's toes are moved towards the shin bones that are found at the front of the lower leg.</span>
4 0
4 years ago
Other questions:
  • Can pockets of vacuum persist in an ideal gas? Assume that a room is filled with air at 20∘C and that somehow a small spherical
    5·1 answer
  • What type of reaction occurs when a candle is burned?
    5·1 answer
  • If there are 60 min in 1hr, and in 1min there are 60 sec; Solve the following problem using dimensional analysis.: 3,800 hrs. to
    15·1 answer
  • How are desert plants adapted to their climate? Describe the climate and give specific examples
    6·1 answer
  • On a spinning ride at the fair, it is inertia that keeps you moving in a circle. true or false​
    10·1 answer
  • Which type of stress causes fault-block mountains?
    7·2 answers
  • What unit is used to measure the amount of energy used?
    6·1 answer
  • Electrical energy is widely used among the various sources of energy...Justify
    5·1 answer
  • Some chlorine atoms have an atomic mass of 37, while others have an atomic mass of 35. What is the difference between the two ty
    6·1 answer
  • HELP PLEASE (View Photo)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!