<span> Weight = mass x acceleration
Earths acceleration is 9.8 m/s*2
1 kg = 2.2 lbs, so 2.0 lbs x 1 kg/2.2 lbs = 0.91 kg
The bag would have a weight of 9.8 x 0.91 = 8.9 N
1. 8.9 x 1/6 = 1.5 N
2. 8.9 x 2.64 = 23.5 N
The mass of the bag at all three locations is 0.91 kg. Mass does not change, the different locations only change its weight. </span>
I believe it is, since the heat causes the water to evaporate and cause condensation,
The work done to pull the sled up to the hill is given by

where
F is the intensity of the force
d is the distance where the force is applied.
In our problem, the work done is

and the distance through which the force is applied is

, so we can calculate the average force by re-arranging the previous equation and by using these data:
<h3><u>Given</u> :</h3>
Current flow light bulb = 2.5
Resistance of light bulb = 3.6Ω
<h3><u>To Find </u>:</h3>
We have to find voltage of battery
<h3><u>Solution</u> :</h3>
➠ As per ohm's law, current flow through a conductor is directly proportional to the applied potential difference.
➝ V ∝ I
➝ <u>V = I × R</u>
Where, R is the resistance of conductor.
⇒ V = I × R
⇒ V = 2.5 × 3.6
⇒ <u>V = 9 volt</u>
Answer:
612000 C
Explanation:
Current, I, is given as the rate of flow of charge, that is:
I = Δq / Δt
where q = electric charge
t = time taken
This implies that:
Δq = I * Δt
The battery rating is 170 Ampere-hours, therefore:
Δq = 170 * 1 hour
But 1 hour = 3600 seconds;
=> Δq = 170 * 3600 = 612000 C
The total charge that the battery can provide is 612000 C.