B. Accelerating a bowling ball from rest to 35 m/s
Explanation:
Accelerating a bowling ball from rest to 35m/s will require more impulse compared to a baseball.
Impulse is the force acting on a body a particular period of time. It is similar to momentum.
When impulse is applied on a body, it change it state from rest and cause motion.
A body with more mass will require a higher impulse to cause it to accelerate. Bowling balls are heavier. They require more impulse to make them move.
Learn more:
Momentum brainly.com/question/9484203
#learnwithBrainly
Answer:4.05 s
Explanation:
Given
First stone is drop from cliff and second stone is thrown with a speed of 52.92 m/s after 2.7 s
Both hit the ground at the same time
Let h be the height of cliff and it reaches after time t

For second stone
---2
Equating 1 &2 we get





Explanation:
The specific heat capacity is the heat or energy required to change one unit mass of a substance of a constant volume by 1 °C. The formula is Cv = Q / (ΔT ⨉ m) .
"Acceleration" is any change in speed or direction of motion ...
slowing down, speeding up, or curving away from a straight line.
You and I, and all other students of Physics, must re-educate
people. We have to tell everyone that 'acceleration' does NOT
mean 'speeding up'. AND, it doesn't even necessarily mean
any change in speed.
Answer:
d) the amount of work is the same whether the bag is moved all at once or in two stages, provided the total height lifted is the same in either case.
Explanation:
While moving the bag to the shelf in one shot we can say that the total work done is given as

here we know that
2H = total height raised by the bag
now when we raise the bag to first shelf and then move it to next shelf
then we will have
![W = W_1 + W_2[tex][tex]W = mgH + mgH](https://tex.z-dn.net/?f=W%20%3D%20W_1%20%2B%20W_2%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DW%20%3D%20mgH%20%2B%20mgH)

so the correct answer will be
d) the amount of work is the same whether the bag is moved all at once or in two stages, provided the total height lifted is the same in either case.