1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
3 years ago
13

PLS HELP ASAP WILL MARK BRAIN and pls explain your answer....

Physics
1 answer:
lora16 [44]3 years ago
5 0

Answer:

it is sublimation because There are three ways heat is transferred into and through the atmosphere:

radiation.

conduction.

convection.

Explanation:

please mark me as brainliest as you wrote over there

You might be interested in
The energy levels of a particular quantum object are -11.7 eV, -4.2 eV, and -3.3 eV. If a collection of these objects is bombard
gogolik [260]

To solve this problem it is necessary to apply an energy balance equation in each of the states to assess what their respective relationship is.

By definition the energy balance is simply given by the change between the two states:

|\Delta E_{ij}| = |E_i-E_j|

Our states are given by

E_1 = -11.7eV

E_2 = -4.2eV

E_3 = -3.3eV

In this way the energy balance for the states would be given by,

|\Delta E_{12}| = |E_1-E_2|\\|\Delta E_{12}| = |-11.7-(-4.2)|\\|\Delta E_{12}| = 7.5eV\\

|\Delta E_{13}| = |E_1-E_3|\\|\Delta E_{13}| = |-11.7-(-3.3)|\\|\Delta E_{13}| = 8.4eV

|\Delta E_{23}| = |E_2-E_3|\\|\Delta E_{23}| = |-4.2-(-3.3)|\\|\Delta E_{23}| = 0.9eV

Therefore the states of energy would be

Lowest : 0.9eV

Middle :7.5eV

Highest: 8.4eV

8 0
4 years ago
when heated the temperature of a water sample increased from 15°C to 39°C. Is absorbed 41840 joules of heat. what is the mass of
Hunter-Best [27]

Answer:

Mass of water: 43 g

Explanation

hope it helps

6 0
3 years ago
An astronaut goes out for a space walk. Her mass (including space suit, oxygen tank, etc.) is 100 kg. Suddenly, disaster strikes
Marina CMI [18]

Answer:

<u>Part A:</u>

Unknown variables:

velocity of the astronaut after throwing the tank.

maximum distance the astronaut can be away from the spacecraft to make it back before she runs out of oxygen.

Known variables:

velocity and mass of the tank.

mass of the astronaut after and before throwing the tank.

maximum time it can take the astronaut to return to the spacecraft.

<u>Part B: </u>

To obtain the velocity of the astronaut we use this equation:

-(momentum of the oxygen tank) = momentum of the astronaut

-mt · vt = ma · vt

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

To obtain the maximum distance the astronaut can be away from the spacecraft we use this equation:

x = x0 + v · t

Where:

x = position of the astronaut at time t.

x0 = initial position.

v = velocity.

t = time.

<u>Part C:</u>

The maximum distance the astronaut can be away from the spacecraft is 162 m.

Explanation:

Hi there!

Due to conservation of momentum, the momentum of the oxygen tank when it is thrown away must be equal to the momentum of the astronaut but in opposite direction. In other words, the momentum of the system astronaut-oxygen tank is the same before and after throwing the tank.

The momentum of the system before throwing the tank is zero because the astronaut is at rest:

Initial momentum = m · v

Where m is the mass of the astronaut plus the equipment (100 kg) and v is its velocity (0 m/s).

Then:

initial momentum = 0

After throwing the tank, the momentum of the system is the sum of the momentums of the astronaut plus the momentum of the tank.

final momentum = mt · vt + ma · va

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

Since the initial momentum is equal to final momentum:

initial momentum = final momentum

0 = mt · vt + ma · va

- mt · vt = ma · va

Now, we have proved that the momentum of the tank must be equal to the momentum of the astronaut but in opposite direction.

Solving that equation for the velocity of the astronaut (va):

- (mt · vt)/ma = va

mt = 15 kg

vt = 10 m/s

ma = 100 kg - 15 kg = 85 kg

-(15 kg · 10 m/s)/ 85 kg = -1.8 m/s

The velocity of the astronaut is 1.8 m/s in direction to the spacecraft.

Let´s place the origin of the frame of reference at the spacecraft. The equation of position for an object moving in a straight line at constant velocity is the following:

x = x0 + v · t

where:

x = position of the object at time t.

x0 = initial position.

v = velocity.

t = time.

Initially, the astronaut is at a distance x away from the spacecraft so that

the initial position of the astronaut, x0, is equal to x.

Since the origin of the frame of reference is located at the spacecraft, the position of the spacecraft will be 0 m.

The velocity of the astronaut is directed towards the spacecraft (the origin of the frame of reference), then, v = -1.8 m/s

The maximum time it can take the astronaut to reach the position of the spacecraft is 1.5 min = 90 s.

Then:

x = x0 + v · t

0 m = x - 1.8 m/s · 90 s

Solving for x:

1.8 m/s · 90 s = x

x = 162 m

The maximum distance the astronaut can be away from the spacecraft is 162 m.

6 0
3 years ago
In your own words, discuss how tides are monitored. Describe the old and new methods of monitoring tides.
harkovskaia [24]
Tides are incredibly vital. They are controlled by the gravity of the moon pivoting the earth on a 28 day cycle, pulling the water round the world. 
On the off chance that you are a mariner you require tide tables for two vital reasons. The first is that the water may not be sufficiently profound to get in and out of harbor or, say, over a sand bank, until specific times of day. 
Another reason is that to spare time and power we need to cruise with the active tide on the off chance that it is going our path - to cruise against the tide can mean really going in reverse - I have seen vast cruising vessels beating to windward against the tide on the western ways to deal with the Solent going actually in reverse, (however they had forward speed through the water). Terrible arranging! 
Since it is a 28 day cycle and there are 13 heaps of 28 days in a year the tides shift day by day with respect to when it is high tide and low tide, More than that we have neap tides when the highs and lows are less and spring tides when they are most prominent. These rely on upon the periods of the moon. 
On the environment front they wash into and through ocean growth circulating air through the plants and ocean life and mix up silt to clean the base of the shoreline and channels and estuaries and invigorate pools that stay on the shoreline for other plant and creature life. This is one justifiable reason motivation behind why tidal hindrances will be a calamity for beach front life since this will be lost to power era. A similar thing applies to wave control and, ashore, wind control - there will be a substantial environmental cost to any maintained or pragmatic utilization of vitality that is in truth not "renewable" - we will upset a fragile adjust of nature that will do much more harm than carbon ever could (on the off chance that it was doing any harm now, which I question) 
Tides are not such a great amount of checked as anticipated but rather perilous high tides can happen at the most elevated spring tide, with the twist inland and low gaseous tension - everything pushes the water advance up the shoreline and cause harm and flooding.
6 0
4 years ago
What is the energy of a photon with a frequency of 1.7 × 1017 Hz? Planck’s constant is 6.63 × 10–34 J•s.
Karo-lina-s [1.5K]
The energy carried by a single photon is given by
E=hf
where h is the Planck's constant and f is the frequency of the photon.

The photon of our exercise has a frequency of f=1.7 \cdot 10^{17} Hz, therefore its energy is
E=hf=(6.63 \cdot 10^{-34}Js)(1.7 \cdot 10^{17} Hz)=1.1 \cdot 10^{-16} J
3 0
3 years ago
Read 2 more answers
Other questions:
  • Two point charges each with a charge of +1,00c are separated by a distance of1.0m what is the magnitude of the force between the
    11·1 answer
  • Electrons are continuously being knocked out of air molecules by cosmic ray particles from space. Once the electrons are free, t
    13·1 answer
  • When a cold air mass replaces a warm air mass, it's called a(n) _____ front?
    15·2 answers
  • If the mass of the ladder is 12.0 kgkg, the mass of the painter is 55.0 kgkg, and the ladder begins to slip at its base when her
    8·1 answer
  • A torque acting on an object tends to produce A. equilibrium B. rotation C. linear motion D. Velocity E. a center of gravity
    14·1 answer
  • A grating has 460 rulings/mm. What is the longest wavelength for which there is a 6.0th-order diffraction line
    10·1 answer
  • A small block with mass 0.0350kg slides in a vertical circle of radius 0.525m on the inside of a circular track. During one of t
    7·1 answer
  • What is used to measure mass?
    6·2 answers
  • An electronic device can be modeled as a resistor that consumes an average of about 0.940 W of electrical power and operates on
    9·1 answer
  • The Force of friction between an object and the surface upon which it is sliding is 12N. The weight of the object is 20N. What i
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!