Answer: 0.5 moles
Explanation:
Cr2(SO3)2 is the chemical formula for chromium sulphate.
Given that,
Amount of moles of Cr2(SO3)2 (n) = ?
Mass of Cr2(SO3)2 in grams = 128.9g
For molar mass of Cr2(SO3)2, use the atomic masses:
Chromium, Cr = 52g;
Sulphur, S = 32g;
Oxygen, O = 16g
Cr2(SO3)2 =
(52g x 2) + [(32g + 16g x 3) x 2]
= 104g + [(32g + 48g) x 2]
= 104g + [80g x 2]
= 104g + 160g
= 264g/mol
Since, n = mass in grams / molar mass
n = 128.9g / 264g/mol
n = 0.488 mole [Round the value of n to the nearest tenth which is 0.5
Thus, there are 0.5 moles in 128.9 grams of Cr2(SO3)2
Answer:
76.9L
Explanation:
Based on the graph, whenever the temperature increases by 100K, the volume increases by 10L, so do 769/10
Answer:
0.79 g
Explanation:
Let's introduce a strategy needed to solve any similar problem like this:
- Apply the mass conservation law (assuming that this reaction goes 100 % to completion): the total mass of the reactants should be equal to the total mass of the products.
Based on the mass conservation law, we need to identify the reactants first. Our only reactant is sodium bicarbonate, so the total mass of the reactants is:

We have two products formed, sodium carbonate and carbonic acid. This implies that the total mass of the products is:

Apply the law of mass conservation:

Substitute the given variables:

Rearrange for the mass of carbonic acid:

Technically there is only one phase unless you account for a solution where you have a pure liquid with something dissolved in it. Unless you count aqueous as a phase which is just dissolved. Since you are in high school the answer you are looking for is one. <span />