Answer:
0.00185 °C
Explanation:
From the question,
The potential energy of the bird = heat gained by the water in the fish tank.
mgh = cm'(Δt)................... Equation 1
Where m = mass of the bird, g = acceleration due to gravity, h = height, c = specific heat capacity of water, m' = mass of water, Δt = rise in temperature of water.
make Δt the subject of the equation
Δt = mgh/cm'............... Equation 2
Given: m = 1 kg, h = 40 m, m' = 50.5 kg
constant: g = 9.8 m/s², c = 4200 J/kg.K
Substitute into equation 2
Δt = 1(40)(9.8)/(50.5×4200)
Δt = 392/212100
Δt = 0.00185 °C
The strength of the friction doesn't matter. Neither does the distance or the time the asteroid takes to stop. All that matters is that the asteroid has
1/2 (mass) (speed squared)
of kinetic energy when it lands, and zero when it stops.
So
1/2 (mass) (original speed squared)
is the energy it loses to friction in order to come to rest.
Answer:
Right now I have three.
Explanation: Thanks for the points luv ^-^.
Answer : The correct option is, (c) 
Explanation :
First we have to calculate the energy or heat.
Formula used :

where,
E = energy (in joules)
V = voltage (in volt)
I = current (in ampere)
t = time (in seconds)
Now put all the given values in the above formula, we get:


Now we have to calculate the heat capacity of the calorimeter.
Formula used :

where,
C = heat capacity of the calorimeter
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:


Therefore, the heat capacity of the calorimeter is, 
Answer:
2.23 × 10^6 g of F- must be added to the cylindrical reservoir in order to obtain a drinking water with a concentration of 0.8ppm of F-
Explanation:
Here are the steps of how to arrive at the answer:
The volume of a cylinder = ((pi)D²/4) × H
Where D = diameter of the cylindrical reservoir = 2.02 × 10^2m
H = Height of the reservoir = 87.32m
Therefore volume of cylindrical reservoir = (3.142×202²/4)m² × 87.32m = 2798740.647m³
1ppm = 1g/m³
0.8ppm = 0.8 × 1g/m³
= 0.8g/m³
Therefore to obtain drinking water of concentration 0.8g/m³ in a reservoir of volume 2798740.647m³, F- of mass = 0.8g/m³ × 2798740.647m³ = 2.23 × 10^6 g must be added to the tank.
Thank you for reading.