The net force acting on the object perpendicular to the table is
∑ F[perp] = F[normal] - mg = 0
where mg is the weight of the object. Then
F[normal] = mg = (15 kg) (9.8 m/s²) = 147 N
The maximum magnitude of static friction is then
0.40 F[normal] = 58.8 N
which means the applied 40 N force is not enough to make the object start to move. So the object has zero acceleration and does not move.
Answer:
.
Explanation:
When the ball is placed in this pool of water, part of the ball would be beneath the surface of the pool. The volume of the water that this ball displaced is equal to the volume of the ball that is beneath the water surface.
The buoyancy force on this ball would be equal in magnitude to the weight of water that this ball has displaced.
Let
denote the mass of this ball. Let
denote the mass of water that this ball has displaced.
Let
denote the gravitational field strength. The weight of this ball would be
. Likewise, the weight of water displaced would be
.
For this ball to stay afloat, the buoyancy force on this ball should be greater than or equal to the weight of this ball. In other words:
.
At the same time, buoyancy is equal in magnitude the the weight of water displaced. Thus:
.
Therefore:
.
.
In other words, the mass of water that this ball displaced should be greater than or equal to the mass of of the ball. Let
denote the density of water. The volume of water that this ball should displace would be:
.
Given that
while
:
.
In other words, for this ball to stay afloat, at least
of the volume of this ball should be under water. Therefore, the volume of this ball should be at least
.
Answer:
An object that is thrown, kicked or otherwise launched through the air is called a projectile.
Explanation:
Answer:
The wavelength of a wave with the frequency of 330hz and a speed of 343m/s would be 1.04m
Explanation:
You can get the wavelength of a wave by dividing the speed of the wave by its frequency, which in this case would be:
343/300, which as a decimal number, it'd be 1.04.
I hope I helped you, and a "Brainliest" is always appreciated! ☺
Reflection- looking at yourself in a mirror and seeing the moon in the sky
Refraction- putting on your glasses in order to see more clearly and the pencil looks like it’s bent when you stick one end of it in water.