Answer:
If it points the other way, the fields subtract, for a lower energy, and so the magnet prefers to turn to point in this way. Magnets in uniform fields feel torques which make them turn around if they are not pointing in the right direction, but there is no net force making the magnet want to levitate.
Explanation:
Answer:
d = (75 i ^ + 93 j ^ + 27 k ^) m
, d2 = (900 i ^ + 1116 j ^ + 324 k ^) m
Explanation:
The two objects are in circular orbit together, therefore with the same angular velocity, after the launch they move with the relative velocity, so we can use the kinematic relation
v = d / t
d = v t
Reduce time to units SI
t = 5 min (60 s / 1 min) = 300 s
X axis
x = vₓ t
x = 0.25 300
x = 75 m
Y axis
y =
t
y = 0.31 300
y = 93 m
Z axis
z=
t
z = 0.09 300
z = 27 m
d = (75 i ^ + 93 j ^ + 27 k ^) m
For the time of 1 h
t2 = 1 h (3600s / 1 h) = 3600
x2 = 900 m
y2 = 1116 m
z2 = 324 m
d2 = (900 i ^ + 1116 j ^ + 324 k ^) m
Answer: 10.36m/s
How? Just divide 200m by 19.3 and you will get how fast he ran per m/s
Answer:
200 mL
Explanation:
Given that,
Initial volume, V₁ = 300 mL
Initial pressure, P₁ = 0.5 kPa
Final pressure, P₂ = 0.75 kPa
We need to find the final volume of the sample if pressure is increased at constant temperature. It is based on Boyle's law. Its mathematical form is given by :

V₂ is the final volume

So, the final volume of the sample is 200 mL.