Answer:


The motion of the block is downwards with acceleration 1.7 m/s^2.
Explanation:
First, we will calculate the acceleration using the kinematics equations. We will denote the direction along the incline as x-direction.

Newton’s Second Law can be used to find the net force applied on the block in the -x-direction.

Now, let’s investigate the free-body diagram of the block.
Along the x-direction, there are two forces: The x-component of the block’s weight and the kinetic friction force. Therefore,

As for the static friction, we will consider the angle 31.8, but just before the block starts the move.

Answer:
85.62 m
168.75 years
101.04 years
Explanation:
= Length of ship = 143 m
v = Velocity of ship = 0.8c
c = Speed of light
s = Distance to Boralis orbit = 135 ly
Gamma value

Length contraction is given by

The length is 85.62 m
Time taken

Time taken from the perspective one Earth is 168.75 years
Time dilation is given by

The time taken from the perspective of the ship is 101.04 years
Answer:
Solid-state
Explanation:
A solid-state device can be defined as a crystalline material that is typically made up of semiconductor and as such controls the number and rate of flow of charged carriers such as holes or electrons.
Some examples of a solid-state device are light emitting diodes (LED), integrated circuit (IC), Transistors, liquid crystal display (LCD) etc.
A solid-state device such as a transistor, refers to a semiconductor component that is used to control the flow of voltage or current and as a gate (switch) for electronic signals. Thus, a transistor allows for the amplification, control and generation of electronic signals in a circuit.
Hence, solid-state devices need constant power to operate. The timing functions are initiated by the presence or absence of a separate "trigger" signal.
Basically, these solid-state devices use the optical and electrical properties of semiconductor components such as transistors, triacs, thyristors, diodes to perform its input-output switching and isolation functions.
The wavelength of the third line in the Lyman series, and identify the type of EM radiation
In this series, the spectral lines are obtained when an electron makes a transition from any high energy level (n=2,3,4,5... ). The wavelength of light emitted in this series lies in the ultraviolet region of the electromagnetic spectrum.
1 / lambda = R(h)* (
-
)
= 109678 (
-
)
= 109678 (8/9)
Lambda = 9 / (109678 * 8 )
= 102.6 *
m = 102.6 nm
To learn more about Lyman series here
brainly.com/question/5762197
#SPJ4
Answer:
1. 1. A quantity is completely described by magnitude alone. A quantity Is completely described by a magnitude with a direction.
[a]. scalar, vector
b. vector, scalar
2.2. Speed is a velocity is a quantity and quantity.
a. scalar, vector
[b]. vector, scalar