Silver: bonds with other atoms because of the weak forces of the valence electrons
FALSE - The strong forces of the valence electrons is actually the reason why silver bonds with other atoms.
Water: bonds allow for liquid state at room temperature and prevent conduction
FALSE - Water is a good conductor.
Carbon: bonds with other atoms through strong shared electrical bonds
TRUE - Carbon shares covalent bonds with other atoms.
Niobium: bonds allow for a strong conductivity found in stainless steel
FALSE - Iron and Carbon make up steel.
Answer:
An atmosphere is the layers of gases surrounding a planet or other celestial body. Earth's atmosphere is composed of about 78% nitrogen, 21% oxygen, and one percent other gases
Answer:
E = 16.464 J
Explanation:
Given that,
Mass of tetherball, m = 0.8 kg
It is hit by a child and rises 2.1 m above the ground, h = 21. m
We need to find the maximum gravitational potential energy of the ball. The formula for the gravitational potential energy is given by :
E = mgh
g is acceleration due to gravity
E = 0.8 kg × 9.8 m/s² × 2.1 m
= 16.464 J
So, the maximum potential energy of the ball is 16.464 J.
Answer : Yes, distance measurements based on the speed of light used for objects in space.
Explanation : A light year is measurement of distance that light travel in a one year.
In a one year light travels 9460000000000 kilometer.
We know that, speed of light is
and time is 31536000 seconds in 1 year
so, distance = speed of light X time
Now, the light year is
Example : The nearest star to earth is about 4.3 light year away.
Answer:
The beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz
Explanation:
Given;
velocity of wave on the string with lower tension, v₁ = 35.2 m/s
the fundamental frequency of the string, F₁ = 258 Hz
<u>velocity of wave on the string with greater tension;</u>
where;
v₁ is the velocity of wave on the string with lower tension
T₁ is tension on the string
μ is mass per unit length
Where;
T₁ lower tension
T₂ greater tension
v₁ velocity of wave in string with lower tension
v₂ velocity of wave in string with greater tension
From the given question;
T₂ = 1.1 T₁
<u>Fundamental frequency of wave on the string with greater tension;</u>
<u /><u />
Beat frequency = F₂ - F₁
= 270.6 - 258
= 12.6 Hz
Therefore, the beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz