Answer:
a) # lap = 301.59 rad
, b) L = 90.48 m
Explanation:
a) Let's use a direct proportions rule (rule of three). If one turn of the wire covers 0.05 cm, how many turns do you need to cover 24 cm
# turns = 1 turn (24 cm / 0.5 cm)
# laps = 48 laps
Let's reduce to radians
# laps = 48 laps (2 round / 1 round)
# lap = 301.59 rad
b) Each lap gives a length equal to the length of the circle
L₀ = 2π R
L = # turns L₀
L = # turns 2π R
L = 48 2π 30
L = 9047.79 cm
L = 90.48 m
Answer:
d) The speed of the astronaut
Explanation:
The sentence describes the speed of the astronaut. This speed value is 10meters per minute.
Now let us understand why;
- Speed is the distance divided by time. It is a scalar quantity without regard for direction but it has magnitude.
- The value 10meters per minute clearly shows this instance. We do not know the direction the astronaut is moving towards.
- Velocity, like speed is the displacement of a body with time. It is a vector quantity and it shows the direction of motion.
- For example, 10m/s due west is a velocity value because we know the direction.
Therefore, since there is no directional sense, the value indicates speed.
You need to observe the car at two different times.
-- The first time:
You write down the car's speed, and the direction it's pointing.
-- The second time:
You write down the car's speed and the direction it's pointing, again.
You take the data back to your lab to analyze it.
-- You compare the first and second speed. If they're different,
then the car had acceleration during the time between the two
observations.
-- You compare the first and second direction. If those are different,
even if the speeds are the same, then the car had acceleration during
the time between the two observations.
(Remember, "acceleration" doesn't mean "speeding up".
It means any change in speed or direction of motion.)
Answer:
B is the answer. Correct me if I'm wrong