Answer:
See the explanation below.
Explanation:
Density will remain the same since density is the relationship between mass and volume. As we can see in the equation below.

where:
Ro = density = 2.5 [g/cm³]
m = mass [g]
V = volume [cm³]
In such a way that when the glass is broken the small fragments retain the same density ratio. That is, each fragment has a small mass and a small volume. That's why the density remains the same.
D = 110 m, t = 5 s
v o = 110 cs : 5 m = 22 m/s
-------------------------------------
v = v o - a t
v = 0 m/s, v o = 22 m/s, t = 4 s
0 = 22 - 4 a
4 a = 22
a = 22 : 4
a = 5.5 m/s²
g = 9.80 m/s²
9.80 : 5.5 = 0.56
Answer:
The magnitude of its acceleration is 5.5 m/s or 0.56 g.
The period of the pendulum is directly proportional to the square root of the length of the pendulum
Explanation:
The period of a simple pendulum is given by the equation

where
T is the period
L is the length of the pendulum
g is the acceleration of gravity
From the equation, we see that when the length of the pendulum increases, the period of the pendulum increases as the square root of L,
. This means that
The period of the pendulum is directly proportional to the square root of the length of the pendulum
From the equation, we also notice that the period of a pendulum does not depend on its mass.
#LearnwithBrainly
Answer:
if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º
Explanation:
When a ray of light falls on a surface if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º this can be explained by Newton's third law, the light when arriving pushes the atoms of the medium that is more dense, and these atoms respond with a force of equal magnitude, but in the opposite direction.
When the fractional index is lower than that of the medium where the reflacted beam travels, notice a change in phase.
Also, when light penetrates the medium, it modifies its wavelength
λ = λ₀ / n
We take these two aspects into account, the condition for contributory interference is
d sin θ = (m + 1/2) λ
for destructive interference we have
d sin θ = m λ
in general this phenomenon is observed at 90º
2 d = (m +1/2) λ° / n
2nd = (m + ½) λ₀
Answer: Transverse
Explanation: Transverse waves possess a vertical wave motion and a horizontal particle motion.