Answer:
1. bending of light in gravitational fields.
2. effect of gravitational redshift.
3. perihelion precission of mecury.
Explanation:
1 bending of light in gravitational fields, we can think of it like this:
by noting the change in position s of stars as they pass near the sun on the celetial sphere, so since the sun creates a gravitational field even the star thats not in our line of side(behind the sun) can be seen because its light is bent.
2. effects of gravitational redshift:
this says that if you are in the gravitational field, your clock moves slower when it is seen by a distant observer.
3. perihelion precission of mecury:
according to Newtonian physics a two body system consisting of a lone orbiting the spherical mass would trace out an ellipse with the center of mass of the system as the focus but mercury deviates from that precission. then according to Einstein, the change in orientation of the orbital ellipsewithin its orbital plane is the effect of gravitation being mediated by the curvature of space-time.
Answer:
Time = t = 6.62 s
Explanation:
Given data:
Height = h = 215 m
Initial velocity =
= 0 m/s
gravitational acceleration = g = 9.8 m/s²
Time = t = ?
According to second equation of motion

As initial velocity is zero, So the first term of right hand side of above equation equal to zero.

t² = 
t =
t = 
t = 6.62 s
Answer:
Check the explanation
Explanation:
1) Pressure acting on the plug = Patm + P
Pressure = Patm + rho*g*h (Here h = D2)
Pressure = 101325 + 1000*9.8*7
Pressure = 169925 Pa
so, Force = PA
Force = 169925*pi*0.0152
Force = 120.1 N
Answer:
gₓ = 23.1 m/s²
Explanation:
The weight of an object is on the surface of earth is given by the following formula:

where,
W = Weight of the object on surface of earth
m = mass of object
g = acceleration due to gravity on the surface of earth = strength of gravity on the surface of earth
Similarly, the weight of the object on Jupiter will be given as:

where,
Wₓ = Weight of the object on surface of Jupiter = 34.665 N
m = mass of object = 1.5 kg
gₓ = acceleration due to gravity on the surface of Jupiter = strength of gravity on the surface of Jupiter = ?
Therefore,


<u>gₓ = 23.1 m/s²</u>