1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ICE Princess25 [194]
3 years ago
12

If the velocity of blood flow in the aorta is normally about 0.32 m/s, what beat frequency would you expect if 4.40-MHz ultrasou

nd waves were directed along the flow and reflected from the red blood cells? Assume that the waves travel with a speed of 1540 m/s .
Physics
1 answer:
dusya [7]3 years ago
4 0

Answer:

The beat frequency is 0.0019 MHz.

Explanation:

Given that,

Velocity = 0.32 m/s

Frequency = 4.40 MHz

Speed of wave = 1540 m/s

We need to calculate the frequency

Case (I),

Observer is moving away from the source

Using Doppler's effect

f'=\dfrac{v-v'}{v}f

Where, v' = speed of observer

Put the value into the formula

f'=\dfrac{1540-0.32}{1540}\times4.40

f'=4.399\ MHz

Case (II),

Cell is as the source of sound of frequency f' and it moving away from the observer.

Using formula of frequency

f''=\dfrac{v-v_{s}}{v+v_{s}}\times f

f''=\dfrac{1540-0.32}{1540+0.32}\times4.399

f''=4.3971\ MHz

We need to calculate the beat frequency

\Delta f= f'-f''

\Delta f=4.399-4.3971=0.0019\ MHz

Hence, The beat frequency is 0.0019 MHz.

You might be interested in
Water of density 1000 kg/m3 falls without splashing at a rate of 0.373 L/s from a height of 40.5 m into a 0.64 kg bucket on a sc
Sphinxa [80]

Answer:

       F_scale = 20.18 N

Explanation:

The scale reading corresponds to two factors, the first the weight of the water in the container and the second the force of the liquid that is falling at the moment of reading.

* Let's find the amount of liquid in the container for a time of t = 2.93 s

Let's use a direct proportion rule. If 0.373 l falls in one second at t = 2.93 s, how many liters are there

        V_{water} = 2.93 s (0.373 l / 1s) = 1.09 l

        V_{water} = 1.09 10⁻³ m³

the amount of water is

       ρ = m / V

       m = ρ V

       m = 1000 1.09 10⁻³

       m = 1.09 kg

so the weight of the liquid in the container for this time is

       W = mg

       W = 1.09 9.8

       W = 10.68 N

* Let's look for the force of the falling jet

Let's use Bernoulli's equation, where the subscript 1 is for the container and the subscript 2 is for the water at a height h

        P₁ + 1/2 ρ g v₁² + ρ g y₁ = P₂ + 1/2  ρ g v₂² + ρ g y₂

In this case, the water falls freely, so the external pressure is atmospheric.

         P₂ = P_{atm}

since they indicate that the water falls, we assume that its initial velocity is zero v₂ = 0

let's use kinematics to find the speed of a drop when it reaches the container y = 0

         v² = v₀² - 2 g (y-y₀)

         v = \sqrt{0 -2 g ( 0-y_o)}

let's calculate

         v = √(2 9.8 40.5)

         v = 28.17 m / s

this is the speed in the container v₁ = 28.17 m / s

the height from where it falls is y₂ = 40.5 and reaches the container y₁ = 0

we substitute in Bernoulli's equation

         P₁ +1/2 ρ g v₁² + 0 = P_{atm} + 0 + ρ g y₂

         P₁ + ½ ρ g v₁² = P_{atm} + ρ g y₂

         P₁ = P_{atm} + ρ g y₂ - ½ ρ g v₁²

         P₁ = 1 10⁵ + 1000 9.8 40.5 - ½ 1000 28.17²

         P₁ = 1 10⁵ + 3.97 10⁵ - 3.69 10⁵

         P₁ = 1.28 10⁵ Pa

The definition of Pressure is

         P = F / A

         F = P A

We must suppose a time to carry out the reading suppose an average time of the modern equipment t = 0.1 s, in this time how much is now arriving

          m₂ = 0.373 0.2 = 0.0746 l = 0.0746 10⁻³ m³

the volume is V = A l

if the length of l = 1 m

A = 0.0746 10⁻³ m³ = 7.45 10⁻⁵ m²

the force of this jet is

            F = P A

            F = 1.28 10⁵  7.46 10⁻⁵

            F = 9.5 N

with these data let's use the equilibrium equation

           F_ scale -W - F = 0

           F_scale = W + F

           F_scale = 10.682 + 9.5

           F_scale = 20.18 N

4 0
3 years ago
Explain what happens to the particles in a substance during a physical change.
omeli [17]

Answer:

In physical changes no new materials are formed and the particles do not change apart from gaining or losing energy. ... Particles stay the same unless there is a chemical change whether the matter is solid, liquid or gas. Only their arrangement, energy and movement changes.

Explanation:

Hope this helps

7 0
3 years ago
Read 2 more answers
To produce change in motion, a force must be a(n)
Bas_tet [7]
It'd be an unbalanced force
5 0
3 years ago
Sound waves and some earthquake waves are what
Aleonysh [2.5K]

Answer:longitudinal waves

Explanation:

They are longitudinal waves

3 0
3 years ago
Read 2 more answers
Two sound waves, A and B, are traveling at the same speed. Wave A has a wavelength of 50 cm and a frequency of 7000 Hz. Wave B h
vekshin1

Answer:

D. 100 cm

Explanation:

The speed of a wave is the wavelength times the frequency.

v = λf

Wave A and B have the same speed, so:

λf = λf

(50 cm) (7000 Hz) = λ (3500 Hz)

λ = 100 cm

6 0
3 years ago
Other questions:
  • An ideal gas occupies 600 cm3 at 20c. at what temperature will it occupy 1200 cm3 if the pressure remains constant? 10c 40c 100c
    8·1 answer
  • A bowling ball has a mass of 6 kg. What happens to its momentum when its speed increases from 2m/s to 4 m/s?
    14·2 answers
  • PLEASE HURRYYYYYY:
    10·1 answer
  • What role did gravity play in the formation of the planets?
    7·2 answers
  • “Is there a relationship between mass and gravity of a planet?” If there is a relationship, (such as- as the mass gets bigger th
    5·1 answer
  • In 3.0 seconds, a wave generator produces 15 pulses that spread over a distance of 45 centimeters. Calculate its period.
    15·1 answer
  • HELP ASAPPPPPPP !!!!
    15·1 answer
  • HELP ME ASAP PLS, ( zoom in on the picture )
    13·1 answer
  • What does the law of conservation of matter state? Question 4 options: Matter can be created, but it can never be destroyed. Mat
    12·1 answer
  • What is the effect on a field of tall grass when a wave caused by a cool summer breeze passes through the field?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!