Answer:
Explanation:
Given
acceleration is given by

where 

Also acceleration is given by








at 





when air drag is neglected maximum height reached is


Explanation:
F net = 2+6-4 ( 2 and 6 N are in same direction so they get added, 4N in opposite direction so it will be subtracted)
F net=4 N
Mass is how heavy is it, weight is the size both are the same
Answer:
a) v = 2,9992 10⁸ m / s
, b) Eo = 375 V / m
, B = 1.25 10⁻⁶ T,
c) λ = 3,157 10⁻⁷ m, f = 9.50 10¹⁴ Hz
, T = 1.05 10⁻¹⁵ s
, UV
Explanation:
In this problem they give us the equation of the traveling wave
E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]
a) what the wave velocity
all waves must meet
v = λ f
In this case, because of an electromagnetic wave, the speed must be the speed of light.
k = 2π / λ
λ = 2π / k
λ = 2π / 1.99 10⁷
λ = 3,157 10⁻⁷ m
w = 2π f
f = w / 2 π
f = 5.97 10¹⁵ / 2π
f = 9.50 10¹⁴ Hz
the wave speed is
v = 3,157 10⁻⁷ 9.50 10¹⁴
v = 2,9992 10⁸ m / s
b) The electric field is
Eo = 375 V / m
to find the magnetic field we use
E / B = c
B = E / c
B = 375 / 2,9992 10⁸
B = 1.25 10⁻⁶ T
c) The period is
T = 1 / f
T = 1 / 9.50 10¹⁴
T = 1.05 10⁻¹⁵ s
the wavelength value is
λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm
this wavelength corresponds to the ultraviolet
The text does not specify whether the resistance R of the wire must be kept the same or not: here I assume R must be kept the same.
The relationship between the resistance and the resistivity of a wire is

where

is the resistivity
A is the cross-sectional area
R is the resistance
L is the wire length
the cross-sectional area is given by

where r is the radius of the wire. Substituting in the previous equation ,we find

For the new wire, the length L is kept the same (L'=L) while the radius is doubled (r'=2r), so the new resistivity is

Therefore, the new resistivity must be 4 times the original one.