Since liquid CO2 cannot exist at pressures lower than 5.11 atm, the triple point is defined as 56.6 °C and 5.11 atm.
Are CO2 liquids explosive?
Although it can impair judgement at high doses, carbon dioxide is neither poisonous nor combustible. Asphyxiation is typically seen as the primary risk associated with CO2. The Boiling Liquid Expanding Vapour Explosion, however, is a serious risk connected to compressed CO2 (BLEVE)
What PSI does CO2 turn into liquid at?
Only at pressures more than 5.1 atm does liquid carbon dioxide form; the triple point of carbon dioxide is approximately 518 kPa at 56.6 °C. Depending on the pressure, the liquid's boiling point ranges from -70°F to +88°F. The expansion ratio when vaporised at 60°F is 535:1. CO2 is a gas or liquid.
Toknw more about Liquid CO2 visit:
https://brainly.in/question/16890479
#SPJ4
Answer:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
Explanation:
Chemical equation:
Al + ZnCl₂ → Zn + AlCl₃
Balanced Chemical equation:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
This is the example of single displacement reaction. Al displace the zinc and form aluminium chloride and zinc metal.
There are two Al three zinc and six chlorine atoms on both side of equation so it is correctly balanced.
Thus it completely follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Answer:
sample B contains the larger density
Explanation:
Given;
volume of sample A, V = 300 mL = 0.3 L
Molarity of sample A, C = 1 M
volume of sample B, V = 145 mL = 0.145 L
Molarity of sample B, C = 1.5 M
molecular mass of sodium chloride, Nacl = 23 + 35.5 = 58.5 g/mol
Molarity is given as;

The reacting mass for sample A = 0.3mol x 58.5 g/mol = 17.55 g
The reacting mass for sample B = 0.2175 mol x 58.5 g/mol = 12.72 g
The density of sample A 
The density of sample B 
Therefore, sample B contains the larger density