Metallic I’m pretty sure. :)
Answer:
3.55atm
Explanation:
We will apply Boyle's law formula in solving this problem.
P1V1 = P2V2
And with values given in the question
P1=initial pressure of gas = 1.75atm
V1=initial volume of gas =7.5L
P2=final pressure of gas inside new piston in atm
V2=final volume of gas = 3.7L
We need to find the final pressure
From the equation, P1V1 = P2V2,
We make P2 subject
P2 = (P1V1) / V2
P2 = (1.75×7.5)/3.7
P2=3.55atm
Therefore, the new pressure inside the piston is 3.55atm
Answer: c.They have a unique set of properties that can be used as identifiers.
Explanation:
Compound is a pure substance which is made from atoms of different elements combined together in a fixed ratio by mass.
Compounds can be decomposed into simpler constituents using chemical reactions.
Example: Water
Compounds have different properties than the elements it is made up of.
Thus the most accurate description of compounds is that they have a unique set of properties that can be used as identifiers.
Answer:
Yes, but it must be kept at that value and do not let it to decrease more.
Explanation:
Hello.
In this case, in order to substantiate whether the cabin meet the federal standards, we need to convert the 500 mmHg to atm and compare the result with 0.72 atm by knowing that 1 atm equals 760 mmHg:

Thus, since 0.66 atm is 0.06 atm away from the federal standard we can infer that it may meet the federal standard, however, it would not be recommended to let the pressure decrease more than that.
<span>5.5×10−2M in calcium chloride and 8.0×10−2M in magnesium nitrate.
What mass of sodium phosphate must be added to 1.5L of this solution to completely eliminate the hard water ion
1) Content of Ca (2+) ions
Calcium chloride = CaCl2
Ionization equation: CaCl2 ---> Ca (2+) + 2 Cl (-)
=> Molar ratios: 1 mol of CaCl2 : 1 mol Ca(2+) : 2 mol Cl(-)
Calculate the number of moles of CaCl2 in 1.5 liters of 5.5 * 10^-2 M solution
M = n / V => n = M*V = 5.5 * 10^ -2 M * 1.5 l = 0.0825 mol CaCl2
=> 0.0825 mol Ca(2+)
2) Number of phosphate ions needed to react with 0.0825 mol Ca(2+)
formula of phospahte ion: PO4 (3-)
molar ratio: 2PO4(3-) + 3Ca(2+) = Ca3 (PO4)2
Proportion: 2 mol PO4(3-) / 3 mol Ca(2+) = x / 0.0825 mol Ca(2+)
=> x = 0.0825 coml Ca(2+) * 2 mol PO4(3-) / 3 mol Ca(2+) = 0.055 mol PO4(3-)
3) Content of Mg(2+) ions
Ionization equation: Mg (NO3)2 ----> Mg(2+) + 2 NO3 (-)
Molar ratios: 1 mol Mg(NO3)2 : 1 mol Mg(2+) + 2 mol NO3(-)
number of moles of Mg(NO3)2 in 1.5 liter of 8.0 * 10^-2 M solution
n = M * V = 8.0 * 10^ -2 M * 1.5 liter = 0.12 moles Mg(NO3)2
ions of Mg(2+) = 0.12 mol Mg(NO3)2 * 1 mol Mg(2+) / mol Mg(NO3)2 = 0.12 mol Mg(2+)
4) Number of phosphate ions needed to react with 0.12 mol Mg(2+)
2PO4(3-) + 3Mg(2+) = Mg3(PO4)2
=> 2 mol PO4(3-) / 3 mol Mg(2+) = x / 0.12 mol Mg(2+)
=> x = 0.12 * 2/3 mol PO4(3-) = 0.16 mol PO4(3-)
5) Total number of moles of PO4(3-)
0.055 mol + 0.16 mol = 0.215 mol
6) Sodium phosphate
Sodium phosphate = Na3(PO4)
Na3PO4 ---> 3Na(+) + PO4(3-)
=> 1 mol Na3PO4 : 1 mol PO4(3-)
=> 0.215 mol PO4(3-) : 0.215 mol Na3PO4
mass in grams = number of moles * molar mass
molar mass of Na3 PO4 = 3*23 g/mol + 31 g/mol + 4*16 g/mol = 164 g/mol
=> mass in grams = 0.215 mol * 164 g/mol = 35.26 g
Answer: 35.26 g of sodium phosphate
</span>