Answer:
0.529
Explanation:
Let's consider the reaction A → Products
Since the units of the rate constant are s⁻1, this is a first-order reaction with respect to A.
We can find the concentration of A at a certain time t (
) using the following expression.
![[A]_{t}=[A]_{0}.e^{-k\times t}](https://tex.z-dn.net/?f=%5BA%5D_%7Bt%7D%3D%5BA%5D_%7B0%7D.e%5E%7B-k%5Ctimes%20t%7D)
where,
[A]₀: initial concentration of A
k: rate constant
![[A]_{t}=0.548M.e^{-3.6\times 10^{-4}s^{-1}\times 99.2s }](https://tex.z-dn.net/?f=%5BA%5D_%7Bt%7D%3D0.548M.e%5E%7B-3.6%5Ctimes%2010%5E%7B-4%7Ds%5E%7B-1%7D%5Ctimes%2099.2s%20%7D)
![[A]_{t}=0.529 M](https://tex.z-dn.net/?f=%5BA%5D_%7Bt%7D%3D0.529%20M)
Https://us-static.z-dn.net/files/d15/c111c5e1b23135c61adec7b554629964.jpg
I believe the answer is the third option. Hope this helps! Please tell me if I am wrong or if there was an error in my answer... also sorry this answer is late.
Answer:
267.57 kPa
Explanation:
Ideal gas law:
PV = n RT R = 8.314462 L-kPa/K-mol
P (16.5) = 1.5 (8.314462)(354) P = 267.57 kPa