The change in temperature (ΔT) : 56.14 ° C
<h3>Further explanation</h3>
Given
Cereal energy = 235,000 J
mass of water = 1000 g
Required
the change in temperature (ΔT)
Solution
Heat can be formulated :
Q = m . c . ΔT
c = specific heat for water = 4.186 J / gram ° C
235000 = 1000 . 4.186 . ΔT

0.040 mol / dm³. (2 sig. fig.)
<h3>Explanation</h3>
in this question acts as a weak base. As seen in the equation in the question,
produces
rather than
when it dissolves in water. The concentration of
will likely be more useful than that of
for the calculations here.
Finding the value of
from pH:
Assume that
,
.
.
Solve for
:
![\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\text{equilibrium}} = \text{K}_b = 1.58\times 10^{-3}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D_%5Ctext%7Bequilibrium%7D%5Ccdot%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BNH%7D%5E%7B%2B%7D%5D_%5Ctext%7Bequilibrium%7D%7D%7B%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BN%7D%5D_%5Ctext%7Bequilibrium%7D%7D%20%3D%20%5Ctext%7BK%7D_b%20%3D%201.58%5Ctimes%2010%5E%7B-3%7D)
Note that water isn't part of this expression.
The value of Kb is quite small. The change in
is nearly negligible once it dissolves. In other words,
.
Also, for each mole of
produced, one mole of
was also produced. The solution started with a small amount of either species. As a result,
.
,
,
.
Volume = 15.5 g × (1 cm³/0.789 g) = 19.6 cm³
Answer:
A and F i think
Explanation:
Freezing point depression is a colligative property observed in solutions that results from the introduction of solute molecules to a solvent. The freezing points of solutions are all lower than that of the pure solvent and is directly proportional to the molality of the solute